Piezo-actuated intracytoplasmic sperm injection (Piezo-ICSI) is used as an efficient in vitro fertilization method with various animals. With this method, elongated spermatids are collected from testicular tissues and are easier to obtain from animals that unexpectedly die than ejaculate sperm. Additionally, elongated spermatid injection often results in the development of embryos and offspring. To develop assisted reproductive techniques (ARTs) for domestic cats, we examined the effects of oocyte activation on cleavage and embryo development after Piezo-ICSI with motile sperm (experiment 1) and after Piezo-ICSI with either testicular sperm or elongated spermatids (experiment 2). In experiment 1, the proportions of cleaved embryos, morulas, and blastocysts following Piezo-ICSI with ethanol activation were significantly higher (P < 0.05) than in the non-activated groups. However, the proportion of blastocysts and the blastocyst quality did not differ significantly (P > 0.05) between the ethanol-activated and non-activated groups. In experiment 2, the cleavage frequencies of oocytes after Piezo-ICSI of testicular sperm or elongated spermatids and ethanol activation were higher (P < 0.05) than that of oocytes in the non-activated group, but the occurrence of blastocyst formation and quality of blastocysts did not differ between the activated and non-activated groups. In summary, cat embryos can be produced by Piezo-actuated microinjection of elongated spermatids. Ethanol activation increased the frequency of cleavage, but it affected neither the occurrence of blastocyst development nor the quality of blastocysts. These results represent an expansion in the repertoire of ARTs that are potentially applicable to both domestic and endangered species of cats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584186PMC
http://dx.doi.org/10.1262/jrd.2018-119DOI Listing

Publication Analysis

Top Keywords

elongated spermatids
20
ethanol activation
12
non-activated groups
12
embryos produced
8
produced piezo-actuated
8
piezo-actuated intracytoplasmic
8
intracytoplasmic sperm
8
sperm injection
8
piezo-icsi testicular
8
testicular sperm
8

Similar Publications

The second form of gonadotropin-releasing hormone (GnRH-II) and its receptor (GnRHR-II) are abundantly produced within the porcine testis and immunolocalize within the seminiferous tubules, suggesting a role in spermatogenesis and/or sperm function. The objective of this study was to quantify GnRH-II and GnRHR-II abundance within boar reproductive tract tissues and examine their role in porcine sperm function. Immunoblotting revealed GnRHR-II abundance was 12-fold greater (P < 0.

View Article and Find Full Text PDF

Iron regulatory protein 1 deficient mice exhibit hypospermatogenesis.

J Biol Chem

December 2024

Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany.

Imbalances in testicular iron levels are linked to compromised sperm production and male infertility. Iron regulatory proteins (IRP) 1 and 2 play crucial roles in cellular iron regulation. We investigated the role of IRP1 on spermatogenesis using Irp1-deficient mice (Irp1).

View Article and Find Full Text PDF

Introduction: In this study, we aimed to explore whether a Y chromosome microdeletion (YCM) confers adverse effects on surgical sperm retrieval potential and intracytoplasmic sperm injection (ICSI) outcomes in men with azoospermia and severe oligospermia.

Methods: This was a retrospective cohort study, which included infertile men with azoospermia or severe oligospermia who were evaluated for karyotype analysis and YCM testing at a university-affiliated hospital between 2010 and 2022. Outcomes of microdissection testicular sperm extraction (mTESE) for surgical sperm retrieval were compared between men diagnosed with YCM and the control group in which no YCM were found.

View Article and Find Full Text PDF

In the phylum Nemertea, the class Hoplonemertea (former Enopla) comprises the largest number of studied species with complex spermatozoa. Asteronemertes gibsoni Chernyshev, 1991, a nemertean species having a symbiotic relationship with sea stars, is characterized by complex filiform spermatozoa. Here, spermatogenesis and spermatozoon structure in A.

View Article and Find Full Text PDF

METTL16 and YTHDC1 Regulate Spermatogonial Differentiation via m6A.

Cell Prolif

November 2024

State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China.

Spermatogenesis is a highly unique and intricate process, finely regulated at multiple levels, including post-transcriptional regulation. N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNA, plays a significant role in transcriptional regulation during spermatogenesis. Previous research indicated extensive m6A modification at each stage of spermatogenesis, but depletion of Mettl3 and/or Mettl14 in spermatogenic cells with Stra8-Cre did not reveal any detectable abnormalities up to the stage of elongating spermatids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!