The binding of small molecules with histone-DNA complexes can cause an interference in vital cellular processes such as cell division and the growth of cancerous cells that results in apoptosis. It is significant to study the interaction of small molecules with histone-DNA complex for the purpose of better understanding their mechanism of action, as well as designing novel and more effective drug compounds. The fluorescence quenching of ct-DNA upon interaction with Berberine has determined the binding of Berberine to ct-DNA with = 9.46 × 10 M. value of ct-DNA-Berberine in the presence of H1 has been observed to be 3.10 × 10 M, indicating that the H1 has caused a reduction in the binding affinity of Berberine to ct-DNA. In the competitive emission spectrum, ethidium bromide (EB) and acridine orange (AO) have been examined as intercalators through the addition of Berberine to ct-DNA complexes, which includes ctDNA-EB and ctDNA-AO. Although in the presence of histone H1 , we have observed signs of competition through the induced changes within the emission spectra, yet there has been apparently no competition between the ligands and probes. The viscosity results have confirmed the different behaviors of interaction between ctDNA and Berberine throughout the binary and ternary systems. We have figured out the IC50 and viability percent values at three different time durations of interaction between Berberine and MCF7 cell line. The molecular experiments have been completed by achieving the results of MTT assay, which have been confirmed to be in good agreement with molecular modeling studies.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2019.1574240 | DOI Listing |
J Biomol Struct Dyn
December 2023
Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India.
The interaction of deoxyribonucleic acid (DNA) with medicinally significant small molecules has long piqued the interest of researchers because its applications are directly related to the discovery of new classes of drugs. Keeping this in mind, here we report berberine derivatives and their interaction with calf thymus DNA (CT-DNA). In this report we discussed on the structural perspectives and thermodynamic characteristics of the interaction of four 9-O-substituted berberines (BRDR1 to BRDR4) with CT-DNA.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
August 2023
Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India.
The telomeric quadruplex structures formed by the guanine-rich sequences of DNA have emerged as targets for small molecules designed and synthesized to stabilize the G-quadruplexes. This report presents a newly synthesized tyrosine-tethered cyclodextrin derivative and its platinum complex. Their structures are characterized using IR, NMR, and mass spectral techniques.
View Article and Find Full Text PDFJ Biomol Struct Dyn
July 2023
Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu, India.
DNA forms non-canonical Guanine-rich-quadruplex structures that play crucial roles such as maintenance of the telomere, transcription, and replication. Selective binding of small molecular ligands to G-quadruplexes and stabilization of them gain importance in the control of cell proliferation and development of therapeutics. In this paper, we report the synthesis of a tryptophan-β-cyclodextrin complex and its platinum complex.
View Article and Find Full Text PDFBeilstein J Org Chem
May 2021
Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cµ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
Molecules
April 2021
Department of Chemistry-Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering (Cµ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
A phosphate-substituted, zwitterionic berberine derivative was synthesized and its binding properties with duplex DNA and G4-DNA were studied using photometric, fluorimetric and polarimetric titrations and thermal DNA denaturation experiments. The ligand binds with high affinity toward both DNA forms ( = 2-7 × 10 M) and induces a slight stabilization of G4-DNA toward thermally induced unfolding, mostly pronounced for the telomeric quadruplex . The ligand likely binds by aggregation and intercalation with ct DNA and by terminal stacking with G4-DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!