Effect of ionizing radiation on physiological and molecular processes in plants.

J Environ Radioact

Lobachevsky State University of Nizhni Novgorod, Department of Biophysics, Gagarin St. 23, Nizhny Novgorod, 603950, Russia. Electronic address:

Published: June 2019

The study of effects of ionizing radiation (IR) on plants is important in relation to several problems: (I) the existence of zones where background radiation - either natural or technogenic - is increased; (II) the problems of space biology; (III) the use of IR in agricultural selection; (IV) general biological problems related to the fundamental patterns and specifics of the effects of IR on various living organisms. By now, researchers have accumulated and systematized a large body of data on the effects of IR on the growth and reproduction of plants, as well as on the changes induced by IR at the genetic level. At the same time, there is a large gap in understanding the mechanisms of IR influence on the biochemical and physiological processes - despite the fact that these processes form the basis determining the manifestation of IR effects at the level of the whole organism. On the one hand, the activity of physiological processes determines the growth of plants; on the other, it is determined by changes at the genetic level. Thus, it is the study of IR effects at the physiological and biochemical levels that can give the most detailed and complex picture of IR action in plants. The review focuses on the effects of radiation on the essential physiological processes, including photosynthesis, respiration, long-distance transport, the functioning of the hormonal system, and various biosynthetic processes. On the basis of a large body of experimental data, we analyze dose and time dependences of the IR-induced effects - which are qualitatively similar - on various physiological and biochemical processes. We also consider the sequence of stages in the development of those effects and discuss their mechanisms, as well as the cause-effect relationships between them. The primary IR-induced physicochemical reactions include the formation of various forms of reactive oxygen species (ROS) and are the cause of the observed changes in the functional activity of plants. The review emphasizes the role of hydrogen peroxide, a long-lived ROS, not only as a damaging agent, but also as a mediator - a universal intracellular messenger, which provides for the mechanism of long-distance signaling. A supposition is made that IR affects physiological processes mainly by violating the regulation of their activity. The violation seems to become possible due to the fact that there exists a crosstalk between different signaling systems of plants, such as ROS, calcium, hormonal and electrical systems. As a result of both acute and chronic irradiation, an increase in the level of ROS can influence the activity of a wide range of physiological processes - by regulating them both at the genetic and physiological levels. To understand the ways, by which IR affects plant growth and development, one needs detailed knowledge about the mechanisms of the processes that occur at the (i) genetic and (ii) physiological levels, as well as their interplay and (iii) knowledge about regulation of these processes at different levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2019.02.001DOI Listing

Publication Analysis

Top Keywords

physiological processes
20
processes
11
physiological
10
ionizing radiation
8
effects
8
study effects
8
large body
8
genetic level
8
physiological biochemical
8
plants review
8

Similar Publications

Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.

Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.

View Article and Find Full Text PDF

Importance: Understanding the interplay between diabetes risk factors and diabetes development is important to develop individual, practice, and population-level prevention strategies.

Objective: To evaluate the progression from normal and impaired fasting glucose levels to diabetes among adults.

Design, Setting, And Participants: This retrospective community-based cohort study used data from the Rochester Epidemiology Project, in Olmsted County, Minnesota, on 44 992 individuals with at least 2 fasting plasma glucose (FPG) measurements from January 1, 2005, to December 31, 2017.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s), the four-stranded structures formed by guanine-rich RNA sequences, are recognized by regions in RNA-binding proteins (RBPs) that are enriched in arginine-glycine repeats (RGG motifs). Importantly, arginine and glycine are encoded by guanine-rich codons, suggesting that some RGG motifs may both be encoded by and interact with rG4s in autogenous messenger RNAs (mRNAs). By analyzing transcriptome-wide rG4 datasets, we show that hundreds of RGG motifs in humans are at least partly encoded by rG4s, with an increased incidence for longer RGG motifs (~10 or more residues).

View Article and Find Full Text PDF

Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!