Tailoring surface states by sequential doping of Ti and Mg for kinetically enhanced hematite photoanode.

J Colloid Interface Sci

Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, PR China; Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, PR China; Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Electrical Power Sources, Chongqing 400715, PR China. Electronic address:

Published: April 2019

Hematite (α-FeO) is the most promising photoanode with a high theoretical photocurrent of 12.6 mA cm. However, the photocurrent of FeO achieved now is far below its theoretical value, which is mainly due to its poor electronic conductivity and sluggish water oxidation kinetics. Herein, a co-doping method by sequential in-situ Ti-doping and ex-situ Mg-doping is used to tailor the surface states of FeO photoanode for great improvement of the charge transfer at the interface and the followed transport ability by the suppressed charge recombination, resulting in about 11-folds and 6.5 times higher than that of the undoped FeO and Ti:FeO at 1.23 V vs. RHE, respectively. This is mainly due to Mg and Ti-doping into FeO modifying the electrode surface states for more holes participation in water oxidation and better kinetics that enhanced charge transfer and suppressed charge recombination for the efficient water oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.02.034DOI Listing

Publication Analysis

Top Keywords

surface states
12
water oxidation
12
charge transfer
8
suppressed charge
8
charge recombination
8
tailoring surface
4
states sequential
4
sequential doping
4
doping kinetically
4
kinetically enhanced
4

Similar Publications

APE1-Activated and NIR-II Photothermal-Enhanced Chemodynamic Therapy Guided by Amplified Fluorescence Imaging.

Anal Chem

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.

The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.

View Article and Find Full Text PDF

Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release.

Discov Nano

January 2025

National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.

Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).

View Article and Find Full Text PDF

Construction of an electrochemical sensor for the detection of methyl parathion with three-dimensional graphdiyne-carbon nanotubes.

Mikrochim Acta

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).

View Article and Find Full Text PDF

Lanthanide atoms show long magnetic lifetimes because of their strongly localized 4 electrons, but electrical control of their spins has been difficult because of their closed valence shell configurations. We achieved electron spin resonance of individual lanthanide atoms using a scanning tunneling microscope to probe the atoms bound to a protective insulating film. The atoms on this surface formed a singly charged cation state having an unpaired 6 electron, enabling tunnel current to access their 4 electrons.

View Article and Find Full Text PDF

Cu-Ni Oxidation Mechanism Unveiled: A Machine Learning-Accelerated First-Principles and TEM Study.

Nano Lett

January 2025

Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!