Postoperative cognitive dysfunction is common in the elderly. Endoplasmic reticulum stress (ER-stress) increases neuronal apoptosis after surgery, and chaperone molecules, such as heat shock proteins (HSPs), help reduce unfolded protein reactions, thereby promoting protein homeostasis. Mammal sirtuin1 (SIRT1)-mediated deacetylation of heat shock factor 1 (HSF1) upregulates HSF1 binding to the HSP70 promoter. Caloric restriction (CR) improves cognition in many neurodegenerative models. In this study, we evaluated whether CR improves impaired learning and memory after surgery by attenuating ER-stress in an SIRT1-dependent manner. Male 18-month-old C57BL/6J mice receiving a 12-week CR or an ad libitum (AL) diet pre-intervention were challenged with tibial open fracture surgery and anesthesia or no treatment. We found a significant protective effect of CR on memory in contextual fear conditioning test after surgery compared with the AL group. CR alleviated ER-stress and neuronal apoptosis in the hippocampus induced by surgery. CR increased HSP70 expression through the HSF1/HSP pathway in a SIRT1-mediated manner, and inhibition of SIRT1 in the hippocampus by lentivirus injection partially reduced the benefits of CR (increased HSP70, deacetylated HSF1, reduced ER-stress, and improved memory). Taken together, our results showed that CR alleviates memory impairment postoperatively via attenuation of ER-stress in the hippocampus in an SIRT1-dependent manner, and the SIRT1/HSF1/HSP70 pathway is involved in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2019.02.011DOI Listing

Publication Analysis

Top Keywords

hsf1/hsp pathway
8
neuronal apoptosis
8
heat shock
8
sirt1-dependent manner
8
increased hsp70
8
surgery
6
er-stress
5
hippocampus
4
pathway hippocampus
4
hippocampus involved
4

Similar Publications

The ubiquitin-proteasome system is a pivotal intracellular proteolysis process in posttranslational modification. It regulates multiple cellular processes. Deubiquitinating enzymes (DUBs) are a stabilizer in proteins associated with tumor growth and metastasis.

View Article and Find Full Text PDF

While pregnancy is known to reduce a woman's life-long risk of breast cancer, clinical data suggest that it can specifically promote HER2 (human EGF receptor 2)-positive breast cancer subtype (HER2+ BC). HER2+ BC, characterized by amplification of HER2, comprises about 20% of all sporadic breast cancers and is more aggressive than hormone receptor-positive breast cancer (the majority of cases). Consistently with human data, pregnancy strongly promotes HER2+ BC in genetic mouse models.

View Article and Find Full Text PDF

Background: The Pacific oyster Crassostrea gigas is an important fishery resource that is sensitive to temperature fluctuations. Thus, it has evolved a protection mechanism against heat stress by increasing the expression of the gene coding for heat shock protein (HSP) 70 under elevated temperatures. In other animals, heat shock response is a transcriptional response driven by the heat shock transcription factor 1 (HSF1) and thermal stress can trigger HSP70 expression to protect the organism via HSF1.

View Article and Find Full Text PDF

Postoperative cognitive dysfunction is common in the elderly. Endoplasmic reticulum stress (ER-stress) increases neuronal apoptosis after surgery, and chaperone molecules, such as heat shock proteins (HSPs), help reduce unfolded protein reactions, thereby promoting protein homeostasis. Mammal sirtuin1 (SIRT1)-mediated deacetylation of heat shock factor 1 (HSF1) upregulates HSF1 binding to the HSP70 promoter.

View Article and Find Full Text PDF

Epithelial apoptosis is an important factor in intestinal ischemia-reperfusion (I/R) injury. Heat shock factor 1 (HSF1) is a classical stress response factor that directly regulates the transcription of heat shock proteins (HSPs) under stress conditions. Although HSPs are involved in protecting the intestine against I/R, the mechanism whereby HSF1 is regulated in I/R is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!