Neural oscillatory signals has been associated with many high-level functions (e.g. attention and working memory), because they reflect correlated behaviors of neural population that would facilitate the information transfer in the brain. On the other hand, a decreased power of oscillation (event-related desynchronization, ERD) has been associated with an irregular state in which many neurons behave in an uncorrelated manner. In contrast to this view, here we show that the human ERD is linked to the increased regularity of oscillatory signals. Using magnetoencephalography, we found that presenting a visual stimulus not only induced a decrease in power of alpha (8-12 Hz) to beta (13-30 Hz) rhythms in the contralateral visual cortex but also reduced the mean and variance of their inter-peak intervals (IPIs). This indicates that the suppressed alpha/beta rhythms became faster (reduced mean) and more regular (reduced variance) during visual stimulation. The same changes in IPIs, especially those of beta rhythm, were observed when subjects allocated their attention to a contralateral visual field. Those results revealed a new role of the event-related decrease in alpha/beta power and further suggested that our brain regulates and accelerates a clock for neural computations by actively suppressing the oscillation amplitude in task-relevant regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2019.02.027 | DOI Listing |
Background: Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion.
View Article and Find Full Text PDFSci Rep
December 2024
Brain Dynamics Lab, Interdisciplinary Center of Biomedical and Engineering Research for Health, Universidad de Valparaíso, Valparaíso, Chile.
Multi-state metastability in neuroimaging signals reflects the brain's flexibility to transition between network configurations in response to changing environments or tasks. We modeled these dynamics with a Kuramoto network of 90 nodes oscillating at an intrinsic frequency of 40 Hz, interconnected using human brain structural connectivity strengths and delays. We simulated this model for 30 min to generate multi-state metastability.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
Autophagy-dependent survival relies on a crucial oscillatory response during cellular stress. Although oscillatory behaviour is typically associated with processes like the cell cycle or circadian rhythm, emerging experimental and theoretical evidence suggests that such periodic dynamics may explain conflicting experimental results in autophagy research. In this study, we demonstrate that oscillatory behaviour in the regulation of the non-selective, stress-induced macroautophagy arises from a series of interlinked negative and positive feedback loops within the mTORC1-AMPK-ULK1 regulatory triangle.
View Article and Find Full Text PDFBiomed Khim
December 2024
Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
Anuclear blood cells, platelets, are the basis for the formation of blood clots in human vessels. While antiplatelet therapy is most often used after ischemic events, there is a need for its personalization due to the limited effectiveness and risks of bleeding. Previously, we developed a series of computational models to describe intracellular platelet signaling and a set of experimental methods to characterize the platelets of a given patient.
View Article and Find Full Text PDFFront Comput Neurosci
December 2024
Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin, Germany.
We adapt non-linear optimal control theory (OCT) to control oscillations and network synchrony and apply it to models of neural population dynamics. OCT is a mathematical framework to compute an efficient stimulation for dynamical systems. In its standard formulation, it requires a well-defined reference trajectory as target state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!