Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Isorhamnetin (IRN), a 3'-O-methylated metabolite of quercetin has antioxidant, anti-inflammatory and neuroprotective properties. In this study, we investigated the learning and memory enhancing effects of IRN on spatial and non-spatial learning and memory deficits induced by scopolamine (3 mg/kg, i.p; muscarinic antagonist) using the novel object recognition test (NORT) and Morris water maze (MWM) task. IRN (1, 5 or 50 mg/kg, p.o.) or vehicle was administered to male albino for 3 consecutive days, scopolamine was given 1 h after last administration on day 3. Five minutes post scopolamine administration the behavioural test of cognitive function was carried out. One hour after probe test (MWM task) on day 7, the brains were isolated to assay for oxidative stress, cholinesterase activity and brain derived neurotrophic factor (BDNF) levels in the prefrontal cortex (PFC) and hippocampus (HIPPO). IRN treatment significantly improved scopolamine-induced learning and memory impairment in behavioural tests. IRN reduced malondialdehyde and nitrite generation induced by scopolamine through increase in glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) activities in the prefrontal cortex and hippocampus. In addition, IRN attenuates scopolamine induced cholinesterase activity and BDNF level in the prefrontal cortex and hippocampus of mice. Findings from this study showed that IRN possesses cognition and memory enhancing properties possibly through enhancement of antioxidant defense system, cholinergic signaling and synaptic plasticity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2019.02.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!