A differential photoelectrochemical hydrogen peroxide sensor based on catalytic activity difference between two zeolitic imidazolate framework surface coatings.

Talanta

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China. Electronic address:

Published: May 2019

Improvement of the sensitivity and selectivity is important in the development of an analytical method. Herein, we propose a differential photoelectrochemical (PEC) sensor to hydrogen peroxide based on the catalytic activity difference between two zeolitic imidazolate framework (ZIF) surface coatings. In the sensing and reference photoelectrodes, ZIF-67 and ZIF-8 films were grown on the surface of carboxylated carbon nanotubes-graphite-like carbon nitride/TiO nanotube array, respectively. The molecular sieve effect of ZIF-8 and ZIF-67 coatings can prevent the diffusion of molecules with size larger than the pores in coating layers (e.g. ascorbic acid), improving the selectivity of the PEC sensor to HO. The sensing photoelectrode offers higher sensitivity to HO than the reference one due to the excellent catalytic activity of ZIF-67. The interference from the surfaces of the sensing and reference photoelectrodes can be eliminated effectively by the differential strategy, enhancing further the selectivity, reliability and stability of the sensor. Under optimized conditions, the as-prepared differential PEC sensor was applied to the detection of HO with limit of detection of 1.5 nM, exhibiting high sensitivity and anti-interference ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2018.12.084DOI Listing

Publication Analysis

Top Keywords

catalytic activity
12
pec sensor
12
differential photoelectrochemical
8
hydrogen peroxide
8
based catalytic
8
activity difference
8
difference zeolitic
8
zeolitic imidazolate
8
imidazolate framework
8
surface coatings
8

Similar Publications

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Atomically Dispersed FeMo Dual Sites for Enhanced Electrocatalytic Nitrogen Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.

View Article and Find Full Text PDF

Palladium Nanosheet Enables Synergistic Electrocatalytic Dehalogenation via Direct and Indirect Electron Transfer Mechanisms.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.

Electrocatalytic dehalogenation is a promising method for the remediation of chlorinated organic pollutants. The dehalogenation performance is controlled by catalytic activity, and the underlying electrocatalytic dehalogenation mechanisms need to be carefully investigated for guiding the design of catalyst. Here we report the preparation of a new Pd-based catalyst with a nanosheet structure (Pd NS) by a simple wet-chemical reduction method.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

Weakening Pd─O Bonds by an Amorphous Pd Layer to Promote Electrocatalysis.

Small

January 2025

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Construction of core-shell structured electrocatalysts with a thin noble metal shell is an effective strategy for lowering the usage of the noble metal and improving electrocatalytic properties because of the structure-induced geometric and electronic effects. Here, the synthesis of a novel core-shell structured nanocatalyst consisting of a thin amorphous Pd shell and a crystalline PdCu core and its significantly improved electrocatalytic properties for both formic acid oxidation and oxygen reduction reactions are shown. The electrocatalyst exhibits 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!