Facile thermal activation of non-reactive cryptocrystalline magnesite and its application on the treatment of acid mine drainage.

J Environ Manage

Council for Scientific and Industrial Research (CSIR), Built Environment (BE), Hydraulic Infrastructure Engineering (HIE), P.O Box 395, Pretoria 0001, South Africa.

Published: April 2019

AI Article Synopsis

  • The study investigates the thermal activation of cryptocrystalline magnesite for treating acid mine drainage (AMD), focusing on optimizing calcination conditions like temperature and time.
  • The researchers found that the best results occurred at 800 °C for 30 minutes, resulting in significant increases in pH and the formation of beneficial compounds like MgO and CaO.
  • This research offers an efficient, eco-friendly alternative to traditional wastewater treatment methods, potentially reducing energy costs for industries.

Article Abstract

In this study, the authors report a facile thermal activation of non-reactive cryptocrystalline magnesite and explore its application on the treatment of acid mine drainage (AMD). The primary aim was to optimize the calcination-water interface reactive conditions. Parameters evaluated include calcination temperature, calcination time, AMD-calcination temperature interface, and AMD-calcination duration interface. PHREEQC geochemical modelling was also applied to substantiate obtained results. The results indicated that the formation of MgO and CaO increase with an increase in calcination temperature and time. The optimum temperature and calcination time were observed to be 800 °C and 30 min in the furnace. The pH was observed to increase with an increase in calcination temperature and time but reached equilibrium at 800 °C and 30 min respectively. Geochemical modelling validated the formation of gypsum with attenuation in Ca ions and predicted the formation of MgSO. Metal species were observed to precipitate with an increase in pH. At 700 °C, Fe was completely removed, while Al, and Mn were completely removed from an aqueous system at 800 °C. This novel study invented the new calcination condition for non-reactive cryptocrystalline magnesite and proved its potential application in wastewater treatment. The calcination conditions were very short and therefore will save industries energy due to replacement of uneconomical and less environmental friendly pre-treatment options that lead to environmental degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.02.030DOI Listing

Publication Analysis

Top Keywords

non-reactive cryptocrystalline
12
cryptocrystalline magnesite
12
calcination temperature
12
facile thermal
8
thermal activation
8
activation non-reactive
8
application treatment
8
treatment acid
8
acid mine
8
mine drainage
8

Similar Publications

Facile thermal activation of non-reactive cryptocrystalline magnesite and its application on the treatment of acid mine drainage.

J Environ Manage

April 2019

Council for Scientific and Industrial Research (CSIR), Built Environment (BE), Hydraulic Infrastructure Engineering (HIE), P.O Box 395, Pretoria 0001, South Africa.

Article Synopsis
  • The study investigates the thermal activation of cryptocrystalline magnesite for treating acid mine drainage (AMD), focusing on optimizing calcination conditions like temperature and time.
  • The researchers found that the best results occurred at 800 °C for 30 minutes, resulting in significant increases in pH and the formation of beneficial compounds like MgO and CaO.
  • This research offers an efficient, eco-friendly alternative to traditional wastewater treatment methods, potentially reducing energy costs for industries.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!