Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effective information transmission for open skill performance requires fine-scale coordination of distributed networks of brain regions linked by white matter tracts. However, how patterns of connectivity in these anatomical pathways may improve global efficiency remains unclear. In this study, we hypothesized that the feeder edges in visual and motor systems have the potential to become "expressways" that increase the efficiency of information communication across brain networks of open skill experts. Thirty elite athletes and thirty novice subjects were recruited to participate in visual tracking and motor imagery tasks. We collected structural imaging data from these subjects, and then resolved structural neural networks using deterministic tractography to identify streamlines connecting cortical and subcortical brain regions of each participant. We observed that superior skill performance in elite athletes was associated with increased information transmission efficiency in feeder edges distributed between orbitofrontal and basal ganglia modules, as well as among temporal, occipital, and limbic system modules. These findings suggest that there is an expressway linking visual and action-control system of skill experts that enables more efficient interactions of peripheral and central information in support of effective performance of an open skill.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2019.02.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!