Whole exome sequencing revealed mutations in FBXL4, UNC80, and ADK in Thai patients with severe intellectual disabilities.

Gene

Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand.

Published: May 2019

Intellectual disabilities (ID) are etiologically heterogeneous. Advanced molecular techniques could be helpful in identification of the underlying genetic defects. We aimed to characterize clinical and molecular features of three Thai patients with ID. Patient 1 had ID, hypotonia and lactic acidosis. Patient 2 had ID and growth failure. Patient 3 had ID, seizure, diarrhea and hypoglycemia. Whole exome sequencing found that Patient 1 was homozygous for a nonsense, c.1303C>T (p.Arg435Ter), mutation in FBXL4, a gene responsible for encephalomyopathic mitochondrial DNA depletion syndrome-13 (MTDPS13). Patient 2 was compound heterozygous for two novel mutations, c.3226C>T (p.Arg1076Ter) and c.3205C>T (p.Arg1069Ter), in UNC80, a known gene of infantile hypotonia with psychomotor retardation and characteristic facies-2 (IHPRF2). Patient 3 was homozygous for a novel missense, c.427T>C (p.Cys143Arg), mutation in ADK, a known gene of adenosine kinase deficiency leading to hypermethioninemia. This study expands the mutational spectra of ID genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2019.01.049DOI Listing

Publication Analysis

Top Keywords

exome sequencing
8
thai patients
8
intellectual disabilities
8
patient homozygous
8
patient
6
sequencing revealed
4
revealed mutations
4
mutations fbxl4
4
fbxl4 unc80
4
unc80 adk
4

Similar Publications

Kaposi Sarcoma (KS) is a frequently aggressive malignancy caused by Kaposi sarcoma herpesvirus (KSHV/HHV-8). People with immunodeficiencies, including HIV, are at increased risk for developing KS, but our understanding of the contributions of the cellular genome to KS pathogenesis remains limited. To determine if there are cellular genetic alterations in KS that might provide biological or therapeutic insights, we performed whole exome sequencing on 78 KS tumors and matched normal control skin from 59 adults with KS (46 with HIV-associated KS and 13 with HIV-negative KS) receiving treatment at the Uganda Cancer Institute in Kampala, Uganda.

View Article and Find Full Text PDF

Characterization of LTBP2 mutation causing mitral valve prolapse.

Eur Heart J Open

January 2025

Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel.

Aims: Mitral valve prolapse (MVP) is a common valvular disorder associated with significant morbidity and mortality, with a strong genetic basis. This study aimed to identify a mutation in a family with MVP and to characterize the valve phenotype in LTBP2 knockout (KO) mice.

Methods And Results: Exome sequencing and segregation analysis were performed on a large family with MVP.

View Article and Find Full Text PDF

Background: Acrodermatitis continua of Hallopeau (ACH) is a rare, sterile pustular psoriasis variant refractory to many conventional treatments. The eruption typically occurs after local trauma or infection; other etiologies include neural, inflammatory, and genetic causes. Herein we reported a single case of a 64-year-old patient with ACH that was successfully treated with spesolimab for 19 weeks.

View Article and Find Full Text PDF

Case Presentation: A girl aged 2 years and 5 months presented to the hospital with chief complaints of intermittent fever and weakness of the left limb for more than 1 month. The child had transient urticaria appearing on her face for 5 days. The inflammatory biomarkers were significantly increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!