Modulation of neuroplasticity-related targets following stress-induced acute escape deficit.

Behav Brain Res

Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy. Electronic address:

Published: May 2019

Understanding resilience is a major challenge to improve current pharmacological therapies aimed at complementing psychological-based approaches of stress-related disorders. In particular, resilience is a multi-factorial construct where the complex network of molecular events that drive the process still needs to be resolved. Here, we exploit the acute escape deficit model, an animal model based on exposure to acute unavoidable stress followed by an escape test, to define vulnerable and resilient phenotypes in rats. Hippocampus and prefrontal cortex (PFC), two of the brain areas most involved in the stress response, were analysed for gene expression at two different time points (3 and 24 h) after the escape test. Total Brain-Derived Neurotrophic Factor (BDNF) was highly responsive in the PFC at 24-h after the escape test, while expression of BDNF transcript IV increased in the hippocampus of resistant animals 3 h post-test. Expression of memory enhancers like Neuronal PAS Domain Protein 4 (Npas4) and Activity-regulated cytoskeleton-associated protein (Arc) decreased in a time- and region-dependent fashion in both behavioural phenotypes. Also, the memory inhibitor Protein Phosphatase 1 (Ppp1ca) was increased in the hippocampus of resilient rats at 3 h post-test. Given the importance of neurotrophic factors and synaptic plasticity-related genes for the development of appropriate coping strategies, our data contribute to an additional step forward in the comprehension of the psychobiology of stress and resiliency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2019.02.023DOI Listing

Publication Analysis

Top Keywords

escape test
12
acute escape
8
escape deficit
8
increased hippocampus
8
3 h post-test
8
escape
5
modulation neuroplasticity-related
4
neuroplasticity-related targets
4
targets stress-induced
4
stress-induced acute
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!