Stereoscopic depth is most useful when it comes from relative rather than absolute disparities. However, the depth perceived from relative disparities can vary with stimulus parameters that have no connection with depth or are irrelevant to the task. We investigated observers' ability to judge the stereo depth of task-relevant stimuli while ignoring irrelevant stimuli. The calculation of depth from disparity differs for 1-D and 2-D stimuli and we investigated the role this difference plays in observers' ability to selectively process relevant information. We show that the presence of irrelevant disparities affects perceived depth differently depending on stimulus dimensionality. Observers could not ignore disparities of irrelevant stimuli when they judged the relative depth between a 1-D stimulus (a grating) and a 2-D stimulus (a plaid). Yet these irrelevant disparities did not affect judgments of the relative depth between 2-D stimuli. Two processes contributing to stereo depth were identified, only one of which computes depth from a horizontal disparity metric and permits attentional selection. The other uses all stimuli, relevant and irrelevant, to calculate an effective disparity direction for comparing disparity magnitudes. These processes produce inseparable effects in most data sets. Using multiple disparity directions and comparing 1-D and 2-D stimuli can distinguish them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.visres.2018.08.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!