Millions of people worldwide have diabetes, which is diagnosed by fasting blood glucose levels exceeding 126 mg/dL. Regardless of the type of diabetes, prolonged hyperglycemia is damaging to several organs including eyes, kidneys, nerve, and/or heart. The damages are associated with a high risk of morbidity and mortality. Diabetes has been implicated in ischemia in the microvasculature of the target tissues, which occurs due to the insufficient perfusion of tissues. The resulting occlusion and pain affect the quality of life. Multiple therapeutic approaches have been proposed for a long time to overcome these vascular complications. Apart from systemically controlling high glucose levels, other therapeutic strategies are not well understood. In this review, we summarize the recent literature for biochemical/cellular targets that are being utilized for the treatment of diabetic microvascular diseases. These targets, which are closely associated with mitochondrial dysfunction, include the polyol and diacylglycerol-protein kinase C pathways, oxidative stress, non-enzymatic glycation and the formation of advanced glycation end products, and immune dysregulation/inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12272-019-01130-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!