Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Application of the Luttinger theorem to the Kondo lattice YbRhSi suggests that its large 4f-derived Fermi surface (FS) in the paramagnetic (PM) regime should be similar in shape and volume to that of the divalent local-moment antiferromagnet (AFM) EuRhSi in its PM regime. Here we show by angle-resolved photoemission spectroscopy that paramagnetic EuRhSi has a large FS essentially similar to the one seen in YbRhSi down to 1 K. In EuRhSi the onset of AFM order below 24.5 K induces an extensive fragmentation of the FS due to Brillouin zone folding, intersection and resulting hybridization of the Fermi-surface sheets. Our results on EuRhSi indicate that the formation of the AFM state in YbRhSi is very likely also connected with similar changes in the FS, which have to be taken into account in the controversial analysis and discussion of anomalies observed at the quantum critical point in this system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377675 | PMC |
http://dx.doi.org/10.1038/s41467-019-08688-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!