Oxidation-Resistant, Cost-Effective Epoxide-Modified Polyamine Adsorbents for CO Capture from Various Sources Including Air.

ChemSusChem

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California, 90089-1661, USA.

Published: April 2019

CO adsorbents based on the reaction of pentaethylenehexamine (PEHA) or tetraethylenepentamine (TEPA) with propylene oxide (PO) were easily prepared in "one pot" by impregnation on a silica support in water. The starting materials were readily available and inexpensive, facilitating the production of the adsorbents on a large scale. The prepared polyamine/epoxide adsorbents were efficient in capturing CO and could be regenerated under mild conditions (50-85 °C). They displayed a much-improved stability compared with their unmodified amine counterparts, especially under oxidative conditions. Leaching of the active organic amine became minimal or nonexistent after treatment with the epoxide. The adsorption as well as desorption kinetics were also greatly improved. The polyamine/epoxide adsorbents were able to capture CO from various sources including ambient air and indoor air with CO concentrations of only 400-1000 ppm. The presence of water, far from being detrimental, increased the adsorption capacity. Their use for indoor air quality purposes was explored.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201802978DOI Listing

Publication Analysis

Top Keywords

adsorbents capture
8
capture sources
8
sources including
8
polyamine/epoxide adsorbents
8
indoor air
8
adsorbents
5
oxidation-resistant cost-effective
4
cost-effective epoxide-modified
4
epoxide-modified polyamine
4
polyamine adsorbents
4

Similar Publications

Highly effective adsorbents, with their impressive adsorption capacity and outstanding selectivity, play a pivotal role in technologies such as carbon capture and utilization in industrial flue gas applications, leading to significant reductions in greenhouse gas emissions. This study aims to synthesize advanced composites via solvothermal methods, incorporating a defective Zirconium-based MOF and amine-functionalized graphene oxide. The main objective is to enhance the CO adsorption capacity of the composite and improve its CO/N separation selectivity.

View Article and Find Full Text PDF

The anti-Stokes emission of photon upconversion nanoparticles (UCNPs) facilitates their use as labels for ultrasensitive detection in biological samples as infrared excitation does not induce autofluorescence at visible wavelengths. The detection of extremely low-abundance analytes, however, remains challenging as it is impossible to completely avoid nonspecific binding of label conjugates. To overcome this limitation, we developed a novel hybridization complex transfer technique using UCNP labels to detect short nucleic acids directly without target amplification.

View Article and Find Full Text PDF

Interfacial adsorption behavior of amine-functionalized MCM-41 for Mo(VI) capture from aqueous solution.

Environ Res

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.

Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.

View Article and Find Full Text PDF

Designing cellulose based biochars for CO separation using molecular simulations.

Sci Rep

January 2025

Thermodynamics Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

This study investigates the pyrolysis mechanism of cellulose using reactive molecular dynamics simulations to prepare biochars for CO separation applications. Six biochars with densities ranging from 0.160 to 0.

View Article and Find Full Text PDF

Acyl-anchored metal-organic cages with interior cryptand-like recognition sites for selective removal of radioactive strontium(II).

Sci Bull (Beijing)

December 2024

Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Tailored design of organic linkers or metal nodes can introduce desirable functionalities into metal-organic cages (MOCs), significantly expanding their potential applications. In this study, we present a viable approach for engineering acyl-type metal nodes to create interior oxygen-rich sites within MOCs, enabling specific recognition of metal ions, including radioactive contaminants, while maintaining the structural integrity of the MOCs. A novel MOC featuring a uranyl-sealed calix[4]resorcinarene (C[4]R)-based multisite cavity, referred to as UOC, is synthesized as a prototype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!