Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-18-4264DOI Listing

Publication Analysis

Top Keywords

correction ras/mapk
4
ras/mapk activation
4
activation associated
4
associated reduced
4
reduced tumor-infiltrating
4
tumor-infiltrating lymphocytes
4
lymphocytes triple-negative
4
triple-negative breast
4
breast cancer
4
cancer therapeutic
4

Similar Publications

Mutation-induced LZTR1 polymerization provokes cardiac pathology in recessive Noonan syndrome.

Cell Rep

July 2024

Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany. Electronic address:

Noonan syndrome patients harboring causative variants in LZTR1 are particularly at risk to develop severe and early-onset hypertrophic cardiomyopathy. In this study, we investigate the mechanistic consequences of a homozygous variant LZTR1 by using patient-specific and CRISPR-Cas9-corrected induced pluripotent stem cell (iPSC) cardiomyocytes. Molecular, cellular, and functional phenotyping in combination with in silico prediction identify an LZTR1-specific disease mechanism provoking cardiac hypertrophy.

View Article and Find Full Text PDF

RASopathies are rare developmental genetic syndromes caused by germline pathogenic variants in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway. Although the incidence of each RASopathy syndrome is rare, collectively, they represent one of the largest groups of multiple congenital anomaly syndromes and have severe developmental consequences. Here, we review our understanding of how RAS/MAPK dysregulation in RASopathies impacts skeletal muscle development and the importance of RAS/MAPK pathway regulation for embryonic myogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!