AI Article Synopsis

  • Bronchopulmonary dysplasia (BPD) is a common issue in preterm infants causing ineffective gas exchange due to poor lung development, linked to elevated levels of miR-34a in myofibroblast cells.
  • Deleting miR-34a in mouse models showed protective effects against lung damage caused by high oxygen levels, indicating its role in lung architecture disruption.
  • Targeting the miR-34a pathway may offer new ways to improve lung development and treat BPD in preterm infants.

Article Abstract

Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth characterized by arrested lung alveolarization, which generates lungs that are incompetent for effective gas exchange. We report here deregulated expression of miR-34a in a hyperoxia-based mouse model of BPD, where miR-34a expression was markedly increased in platelet-derived growth factor receptor (PDGFR)α-expressing myofibroblasts, a cell type critical for proper lung alveolarization. Global deletion of miR-34a; and inducible, conditional deletion of miR-34a in PDGFRα cells afforded partial protection to the developing lung against hyperoxia-induced perturbations to lung architecture. mRNA was identified as the relevant miR-34a target, and using a target site blocker , the miR-34a/ interaction was validated as a causal actor in arrested lung development. An antimiR directed against miR-34a partially restored PDGFRα myofibroblast abundance and improved lung alveolarization in newborn mice in an experimental BPD model. We present here the first identification of a pathology-relevant microRNA/mRNA target interaction in aberrant lung alveolarization and highlight the translational potential of targeting the miR-34a/ interaction to manage arrested lung development associated with preterm birth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404112PMC
http://dx.doi.org/10.15252/emmm.201809448DOI Listing

Publication Analysis

Top Keywords

lung alveolarization
16
arrested lung
12
targeting mir-34a/
8
bronchopulmonary dysplasia
8
preterm birth
8
lung
8
deletion mir-34a
8
mir-34a/ interaction
8
lung development
8
mir-34a
6

Similar Publications

Background: Lung ultrasound (LUS) is increasingly utilized in veterinary medicine to assess pulmonary conditions. However, the characterization of pleural line and subpleural fields using different ultrasound transducers, specifically high-frequency linear ultrasound transducers (HFLUT) and curvilinear transducers (CUT), remains underexplored in canine patients. This study aimed to evaluate inter-rater agreement in the characterization of pleural line and subpleural fields using B- and M-mode ultrasonography in dogs with and without respiratory distress.

View Article and Find Full Text PDF

Wnt3a Enhances Mesenchymal Stem Cell Engraftment and Differentiation in a Chronic Obstructive Pulmonary Disease Rat Model.

Int J Chron Obstruct Pulmon Dis

January 2025

Department of Respiratory and Critical Care Medicine, Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.

Background: Bone marrow mesenchymal stem cell (BMSC) therapy is a novel approach for treating COPD. However, the difficulty in engraftment and easy clearance of BMSCs in vivo has hindered their clinical application. Hence, exploring effective methods to improve the engraftment and differentiation rates of BMSCs in vivo is urgent.

View Article and Find Full Text PDF

This study describes a complex human in vitro model for evaluating anti-inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre-clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co-cultured with macrophages differentiated from the THP-1 cell line, creating a physiological biological microenvironment. To mimic the three-dimensional architecture and dynamic expansion and relaxation of the air-blood-barrier, they are grown on a stretchable microphysiological lung-on-chip.

View Article and Find Full Text PDF

HMGB1 mediates epithelial-mesenchymal transition and fibrosis in silicosis via RAGE/β-catenin signaling.

Chem Biol Interact

January 2025

Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China. Electronic address:

Epithelial-mesenchymal transition (EMT) is implicated in the pathogenesis of silicosis. High mobility group box 1 (HMGB1) has been found to induce EMT in fibrotic diseases. Previous studies have revealed a critical role of HMGB1 in silicosis, whereas the detail mechanisms still obscure.

View Article and Find Full Text PDF

Evaluation of the therapeutic effects of nebulized inhalation of hydrogen-rich water on primary blast lung injury in C57BL/6 mice.

Surgery

January 2025

Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:

Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!