Aggregation and sedimentation of active Brownian particles at constant affinity.

J Chem Phys

Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany.

Published: February 2019

We study the motility-induced phase separation of active particles driven through the interconversion of two chemical species controlled by ideal reservoirs (chemostats). As a consequence, the propulsion speed is non-constant and depends on the actual inter-particle forces, enhancing the positive feedback between increased density and reduced motility that is responsible for the observed inhomogeneous density. For hard discs, we find that this effect is negligible and that the phase separation is controlled by the average propulsion speed. For soft particles and large propulsion speeds, however, we predict an observable impact on the collective behavior. We briefly comment on the reentrant behavior found for soft discs. Finally, we study the influence of non-constant propulsion on the sedimentation profile of non-interacting active particles.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5081115DOI Listing

Publication Analysis

Top Keywords

phase separation
8
active particles
8
propulsion speed
8
aggregation sedimentation
4
sedimentation active
4
active brownian
4
particles
4
brownian particles
4
particles constant
4
constant affinity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!