Background: The present study compared corticospinal excitability to the biceps brachii muscle during arm cycling at a self-selected and a fixed cadence (SSC and FC, respectively). We hypothesized that corticospinal excitability would not be different between the two conditions.
Methods: The SSC was initially performed and the cycling cadence was recorded every 5 s for one minute. The average cadence of the SSC cycling trial was then used as a target for the FC of cycling that the participants were instructed to maintain. The motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) of the motor cortex were recorded from the biceps brachii during each trial of SSC and FC arm cycling.
Results: Corticospinal excitability, as assessed via normalized MEP amplitudes (MEPs were made relative to a maximal compound muscle action potential), was not different between groups.
Conclusions: Focusing on maintaining a fixed cadence during arm cycling does not influence corticospinal excitability, as assessed via TMS-evoked MEPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406314 | PMC |
http://dx.doi.org/10.3390/brainsci9020041 | DOI Listing |
J Neural Eng
January 2025
Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, 4229 Pearl Road, Suite N4-13, Cleveland, Ohio, 44109-1998, UNITED STATES.
Ipsilateral motor evoked potentials (iMEPs) are believed to represent cortically evoked excitability of uncrossed brainstem-mediated pathways. In the event of extensive injury to (crossed) corticospinal pathways, which can occur following a stroke, uncrossed ipsilateral pathways may serve as an alternate resource to support the recovery of the paretic limb. However, iMEPs, even in neurally intact people, can be small, infrequent, and noisy, so discerning them in stroke survivors is very challenging.
View Article and Find Full Text PDFExp Brain Res
January 2025
Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, UK.
The aim of this study was to assess if ischaemic preconditioning (IPC) can reduce pain perception and enhance corticospinal excitability during voluntary contractions. In a randomised, within-subject design, healthy participants took part in three experimental visits after a familiarisation session. Measures of pressure pain threshold (PPT), maximum voluntary isometric force, voluntary activation, resting twitch force, corticospinal excitability and corticospinal inhibition were performed before and ≥10 min after either, unilateral IPC on the right leg (3 × 5 min); a sham protocol (3 × 1 min); or a control (no occlusion).
View Article and Find Full Text PDFExp Physiol
January 2025
Strength and Conditioning Research Laboratory, College of Physical Education, University of Brasília, Brasília, Brazil.
This study examined the acute effects of dynamic stretching at different velocities on the neuromuscular system. Fourteen participants underwent four experimental sessions in random order: (1) control (lying at rest with the ankle in a neutral position); (2) slow velocity dynamic stretching (50 beats/min; SLOW); (3) moderate velocity dynamic stretching (70 beats/min; MOD); and (4) fast velocity dynamic stretching (90 beats/min; FAST). The stretching protocols consisted of four sets of 10 repetitions and targeted the plantar flexor muscles of the right ankle.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFSci Rep
December 2024
BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!