A macroarray was developed for the detection of 11 potato viruses and Potato spindle tuber viroid. The 11 viruses detected included those commonly found or tested for in North American potato seed certification programs: Alfalfa mosaic virus, Cucumber mosaic virus, Potato mop top virus, Potato leafroll virus, Potato latent virus, Potato virus A, Potato virus M, Potato virus S, Potato virus X, Potato virus Y, and Tobacco rattle virus. These viruses were detected using oligonucleotide 70-mer probes and labeled targets prepared by a random primed amplification procedure. Potato plants analyzed included those infected with 12 reference virus stocks and 36 field isolates. Results from the macroarray were entirely consistent with those obtained using a standard serological assay (enzyme-linked immunosorbent assay). Four isolates of Potato spindle tuber viroid, in mixed infection with one or more viruses, also were detected in the array, although strong hybridization signals required amplification with viroid-specific primers in combination with anchored-random primers. In individual plants, up to four viruses, or a viroid plus two viruses, were detected, with no apparent competition or inhibition. Macroarrays are a cost-effective approach to the simultaneous diagnostic detection of multiple pathogens from infected plants.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-92-5-0730DOI Listing

Publication Analysis

Top Keywords

virus potato
32
potato virus
20
viruses detected
16
potato
14
potato spindle
12
spindle tuber
12
tuber viroid
12
virus
12
viruses potato
8
viroid viruses
8

Similar Publications

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Protease activity of NIa-Pro determines systemic pathogenicity of clover yellow vein virus.

Virology

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China. Electronic address:

Clover yellow vein virus (ClYVV), a potyvirus that infects various dicotyledonous plants, poses a significant threat to the cultivation of legumes. Although potyviral NIa-Pro was extensively studied in viral infection cycle and host antiviral responses, the contribution of NIa-Pro protease activity to virus systemic symptoms has not yet been reported. In this study, we developed infectious clones of a ClYVV isolated from Pisum sativum.

View Article and Find Full Text PDF

Aulacorthum solani is a worldwide agricultural pest aphid capable of feeding on a wide range of host plants. This insect is a vector of plant viruses and causes injury to crops including stunted growth from the loss of phloem. We found that the publicly available genome for A.

View Article and Find Full Text PDF

Sweetpotato ( Lam.) is grown worldwide and is a staple food in many countries. One of the main constraints for sweetpotato production is cultivar decline, caused by the accumulation of viruses and subsequent losses of storage root yield and quality over years of vegetative propagation.

View Article and Find Full Text PDF

Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein.

Mol Plant Pathol

January 2025

Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!