Auxin-Induced Resistance to Common Scab Disease of Potato Linked to Inhibition of Thaxtomin A Toxicity.

Plant Dis

Tasmanian Institute of Agricultural Research, University of Tasmania, New Town Research Laboratories, 13 St. John's Avenue, New Town, Tasmania 7008, Australia.

Published: September 2008

Production of the phytotoxin thaxtomin A by pathogenic Streptomyces spp. is essential for induction of common scab disease in potato. Prior studies have shown that foliar application of sublethal concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and other auxin or auxin-like compounds significantly reduced severity and occurrence of common scab in subsequently produced tubers. However, the means of disease suppression by these compounds was not known. We confirm the disease suppressive activity of 2,4-D. Detailed tuber physiological examination showed that lenticel numbers, lenticel external dimensions, and periderm thickness and structure, physiological features believed to be critical to Streptomyces scabiei infection, were not substantially changed by 2,4-D treatments, negating a possible mechanism for disease suppression through alteration of these structures. In contrast, our studies show accumulation of 2,4-D in tubers of treated plants occurs and is associated with an enhanced tolerance to thaxtomin A. Applying 2,4-D to cultures of S. scabiei did not significantly alter in vitro growth of the pathogen. Thaxtomin A production by the pathogen was inhibited by 2,4-D, but only at the highest rate tested (1.0 mM), which is at least 200-fold more than is found in 2,4-D treated tubers. These data suggest 2,4-D has no direct effect on the pathogen or its virulence. Confirmatory evidence from studies with Arabidopsis thaliana seedlings demonstrated that the auxins 2,4-D and IAA ameliorate thaxtomin A toxicity. The evidence presented whereby auxin treatment inhibits toxicity of thaxtomin A secreted by the pathogen suggests a novel indirect means of disease suppression.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-92-9-1321DOI Listing

Publication Analysis

Top Keywords

common scab
12
disease suppression
12
24-d
9
scab disease
8
disease potato
8
thaxtomin toxicity
8
disease
6
thaxtomin
6
auxin-induced resistance
4
resistance common
4

Similar Publications

Aims: Potato common scab (CS), caused by pathogenic Streptomyces, is a devastating disease affecting potato crops worldwide. Antagonistic microorganisms have been used as biological control agents to inhibit Streptomyces scabies and reduce the use of synthetic pesticides. However, identifying beneficial microorganisms for controlling CS remains undetermined.

View Article and Find Full Text PDF

Pectate lyases (PL), as important polysaccharide lyases, play an important role in the infection of host plants by pathogenic. A previous study found that the PL gene was up-regulated in the interaction between 5T-1 and potatoes. In this study, 5T-1 was used as the study object, and its gene function was investigated using bioinformatics analysis, prokaryotic expression, and CRISPR-Cas9 technology.

View Article and Find Full Text PDF

The prolonged practice of continuous potato cropping, coupled with inadequate field management, disrupts the soil bacterial community equilibrium. Such disturbances compromise the resilience of the soil ecosystem, predisposing it to an increased incidence of potato diseases. However, the effects of the phosphorus fertiliser application rate on the rhizosphere soil bacterial community composition of potatoes and the occurrence of potato common scab (CS) have not been adequately studied.

View Article and Find Full Text PDF
Article Synopsis
  • Streptomyces scabiei causes common scab in root and tuber crops and exhibits antimicrobial properties influenced by peptone levels.
  • Comparative metabolomics revealed that increased peptone led to enhanced production of siderophores, which are molecules that help inhibit the growth of competing microorganisms by sequestering iron.
  • The study also found that different nitrogen sources can trigger siderophore production, impacting competition for iron among soil-dwelling microbes and possibly affecting plant pathogens.
View Article and Find Full Text PDF

Background: Understanding the interaction between environmental conditions, crop yields, and soil health is crucial for sustainable agriculture in a changing climate. Management practices to limit disease are a balancing act. For example, in potato production, dry conditions favour common scab (Streptomyces spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!