Intensive agriculture and rapid urbanization have increased nutrient inputs to Lake Taihu in recent decades. This resulted in eutrophication. We aim to better understand the sources of river export of total dissolved nitrogen (TDN) and phosphorus (TDP) to Lake Taihu in relation to critical nutrient loads. We implemented the MARINA-Lake (Model to Assess River Inputs of Nutrients to seAs) model for Lake Taihu. The MARINA-Lake model quantifies river export of dissolved inorganic and organic N and P to the lake by source from sub-basins. Results from the PCLake model are used to identify to what extent river export of nutrients exceeds critical loads. We calculate that rivers exported 61 kton of TDN and 2 kton of TDP to Lake Taihu in 2012. More than half of these nutrients were from human activities (e.g., agriculture, urbanization) in Sub-basins I (north) and IV (south). Most of the nutrients were in dissolved inorganic forms. Diffuse sources contributed 90% to river export of TDN with a relatively large share of synthetic fertilizers. Point sources contributed 52% to river export of TDP with a relatively large share of sewage systems. The relative shares of diffuse and point sources varied greatly among nutrient forms and sub-basins. To meet critical loads, river export of TDN and TDP needs to be reduced by 46-92%, depending on the desired level of chlorophyll-a. There are different opportunities to meet the critical loads. Reducing N inputs from synthetic fertilizers and P from sewage systems may be sufficient to meet the least strict critical loads. A combination of reductions in diffuse and point sources is needed to meet the most strict critical loads. Combining improved nutrient use efficiencies and best available technologies in wastewater treatment may be an effective opportunity. Our study can support the formulation of effective solutions for lake restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.02.051 | DOI Listing |
Insects
November 2024
Department of Entomology and Nematology, Institute for Agricultural Sciences, Indian River and Research Center, University of Florida, Fort Pierce, FL 34945, USA.
(Olivier) (Coleoptera: Curculionidae), the red palm weevil (RPW), is a concealed voracious pest of different ornamental and economically important palm species, particularly the date palm. It can cause huge losses in ornamental and commercial palm plantations. RPW has spread rapidly from its original distribution in Southeast Asia to date palm-growing countries worldwide.
View Article and Find Full Text PDFSci Total Environ
January 2025
Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain.
European eel is considered a "critically endangered" species due to its population decline (c.a. 98 %) in all European waters, primarily because human activities.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
Consumers vary in their excretion of nitrogen and phosphorus, altering nutrient cycles and ecosystem function. Traditional mass balance models that focus on dietary and tissue nutrients have poorly explained such variation in excretion. Here, we contrast diet and tissue nutrient models for nutrient excretion with predation risk, an often overlooked factor, using the Trinidadian guppy (Poecilia reticulata) as our model system.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Geography, National Taiwan Normal University, Taipei, Taiwan.
The impact of flood diversion channels on river sediment transport has been rarely reported. This study uses the Yuanshantze flood diversion tunnel (YFDT), which was commissioned in July 2005 in Taiwan, as an example. This study calculates the sediment transport in the Keelung River from 1997 to 2018 by using seasonal rating curves, in the form of aQb.
View Article and Find Full Text PDFEnviron Pollut
December 2024
School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic pollutants widely present in various environmental media. Some PAHs have carcinogenic, teratogenic, and mutagenic effects. Urban lakes are severely polluted by PAHs due to human activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!