A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. | LitMetric

This study aims to employ two artificial intelligence (AI) methods, namely, artificial neural networks (ANNs) and adaptive neuro fuzzy inference system (ANFIS) model, for predicting life cycle environmental impacts and output energy of sugarcane production in planted or ratoon farms. The study is performed in Imam Khomeini Sugarcane Agro-Industrial Company (IKSAIC) in Khuzestan province of Iran. Based on the cradle to grave approach, life cycle assessment (LCA) is employed to evaluate environmental impacts and study environmental impact categories of sugarcane production. Results of this study show that the consumed and output energies of sugarcane production are in average 172,856.14 MJ ha, 120,000 MJ ha in planted farms and 122,801.15 MJ ha, 98,850 MJ ha in ratoon farms, respectively. Results show that, in sugarcane production, electricity, machinery, biocides and sugarcane stem cuttings have the largest impact on the indices in planted farms. However, in ratoon farms, electricity, machinery, biocides and nitrogen fertilizers have the largest share in increasing the indices. ANN model with 9-10-5-11 and 7-9-6-11 structures are the best topologies for predicting environmental impacts and output energy of sugarcane production in planted and ratoon farms, respectively. Results from ANN models indicated that the coefficient of determination (R) varies from 0.923 to 0.986 in planted farms and 0.942 to 0.982 in ratoon farms in training stage for environmental impacts and outpt energy. Results from ANFIS model, which is developed based on a hybrid learning algorithm, showed that, for prediction of environmental impacts, R varies from 0.912 to 0.978 and 0.986 to 0.999 in plant and ratoon farms, respectively, and for prediction of output energy, R varies from 0.944 and 0.996 in planted and ratoon farms. Results indicate that ANFIS model is a useful tool for prediction of environmental impacts and output energy of sugarcane production in planted and ratoon farms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.02.004DOI Listing

Publication Analysis

Top Keywords

ratoon farms
32
environmental impacts
28
sugarcane production
28
output energy
20
planted ratoon
16
life cycle
12
anfis model
12
impacts output
12
energy sugarcane
12
production planted
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!