Real-time monitoring of water quality of stream water using sulfur-oxidizing bacteria as bio-indicator.

Chemosphere

Department of Biological Environment, Kangwon National University, 192-1 Hyoja-2-dong, Gangwondo, Chuncheon, 200-701, South Korea. Electronic address:

Published: May 2019

In aquatic ecosystems, real-time water-quality (WQ) biomonitoring has become the most effective technology for monitoring toxic events by using living organisms as a biosensor. In this study, an online WQ monitoring system using sulfur oxidizing bacteria (SOB) was tested to monitor WQ changes in real-time in natural stream water. The WQ monitoring system consisted of three SOB reactors (one continuous and two semi-continuous mode reactors). The SOB system did not detect any toxicity in relatively-unpolluted, natural stream water when operated for more than six months. When diluted swine wastewater (50:1) was added to the influent of the reactors, the system detected toxic conditions in both the continuous and semi-continuous operational modes, showing 90% inhibition of SOB activity within 1 h of operation. The addition of 30 mg/L NO-N or 2 mg/L of Cr to the influents of SOB reactors resulted in the complete inhibition of the SOB activity within 1-2 h. The results demonstrated the successful application of an SOB bioassay as an online toxicity monitoring system for detecting pollutants from stream or river waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.01.089DOI Listing

Publication Analysis

Top Keywords

stream water
12
monitoring system
12
natural stream
8
sob reactors
8
continuous semi-continuous
8
inhibition sob
8
sob activity
8
sob
7
system
5
real-time monitoring
4

Similar Publications

Integrated analysis of marked and count data to characterize fine-scale stream fish movement.

Oecologia

January 2025

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.

Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.

View Article and Find Full Text PDF

The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.

View Article and Find Full Text PDF

Optical properties and photobleaching of wildfire ashes aqueous extracts.

Environ Sci Process Impacts

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, 80309, USA.

Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood.

View Article and Find Full Text PDF

In waterflooding development of narrow channel reservoirs, the water cut rises quickly, and the reservoir becomes nearly fully flooded, yet oil recovery remains low. The narrow strip sand body and long-term water injection create a complex oil and water distribution, making it difficult to evaluate the degree of reservoir utilization during waterflooding. This paper establishes a practical streamline method to quantitatively characterize the waterflooding mobilization degree of narrow channel reservoirs.

View Article and Find Full Text PDF

Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!