A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A noninvasive MRI based approach to estimate the mechanical properties of human knee ligaments. | LitMetric

A noninvasive MRI based approach to estimate the mechanical properties of human knee ligaments.

J Mech Behav Biomed Mater

Orthopaedic Research Lab, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Biomechanical Engineering, University of Twente, Enschede, the Netherlands.

Published: May 2019

Characterization of the main tibiofemoral ligaments is an essential step in developing patient-specific computational models of the knee joint for personalized surgery pre-planning. Tensile tests are commonly performed in-vitro to characterize the mechanical stiffness and rupture force of the knee ligaments which makes the technique unsuitable for in-vivo application. The time required for the limited noninvasive approaches for properties estimation based on knee laxity remained the main obstacle in clinical implementation. Magnetic resonance imaging (MRI) technique can be a platform to noninvasively assess the knee ligaments. In this study the aim was to explore the potential role of quantitative MRI and dimensional properties, in characterizing the mechanical properties of the main tibiofemoral ligaments. After MR scanning of six cadaveric legs, all 24 main tibiofemoral bone-ligaments-bone specimens were tested in vitro. During the tensile test cross sectional area of the specimens was captured using ultrasound and force-displacement curve was extracted. Digital image correlation technique was implemented to check the strain behavior of the specimen and rupture region and to assure the fixation of ligament bony block during the test. The volume of the specimen was measured using manual segmentation data, and quantitative MR parameters as T, T, and T were calculated. Linear mixed statistical models for repeated measures were used to examine the association of MRI parameters and dimensional measurements with the mechanical properties (stiffness and rupture force). The results shows that while the mechanical properties were mostly correlated to the volume, inclusion of the MR parameters increased the correlation strength for stiffness (R ≈ 0.48) and partial rupture force (R = 0.53). Inclusion of ligament type in the statistical analysis enhanced the correlation of mechanical properties with MR parameters and volume as for stiffness (R = 0.60) and partial rupture (R = 0.57). In conclusion, this study revealed the potentials in using quantitative MR parameters, T, T and T, combined with specimen volume to estimate the essential mechanical properties of all main tibiofemoral ligaments required for subject-specific computational modeling of human knee joint.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2019.01.022DOI Listing

Publication Analysis

Top Keywords

mechanical properties
24
main tibiofemoral
16
knee ligaments
12
tibiofemoral ligaments
12
rupture force
12
properties
8
human knee
8
knee joint
8
stiffness rupture
8
properties main
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!