An efficient genomic signature ranking method for genomic island prediction from a single genome.

J Theor Biol

College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA. Electronic address:

Published: April 2019

Genomic islands that are associated with microbial adaptations and carry genomic signatures different from that of the host, and thus many methods have been proposed to select the informative genomic signatures from a range of organisms and discriminate genomic islands from the rest of the genome in terms of these signature biases. However, they are of limited use when closely related genomes are unavailable. In the present work, we proposed a kurtosis-based ranking method to select the informative genomic signatures from a single genome. In simulations with alien fragments from artificial and real genomes, the proposed kurtosis-based ranking method efficiently selected the informative genomic signatures from a single genome, without annotated information of genomes or prior knowledge from other datasets. This understanding can be useful to design more powerful method for genomic island detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2019.02.008DOI Listing

Publication Analysis

Top Keywords

genomic signatures
16
ranking method
12
single genome
12
informative genomic
12
genomic
8
method genomic
8
genomic island
8
genomic islands
8
select informative
8
proposed kurtosis-based
8

Similar Publications

Purpose: To detect the prognostic importance of liquid-liquid phase separation (LLPS) in lung adenocarcinoma.

Methods: The gene expression files, copy number variation data, and clinical data were downloaded from The Cancer Genome Atlas cohort. LLPS-related genes were acquired from the DrLLPS website.

View Article and Find Full Text PDF

HLA-DRB1*08:130 shows a Leucine at position 64 not described previously.

View Article and Find Full Text PDF

Objectives: To identify cuproptosis- and ferroptosis-related genes involved in nonalcoholic fatty liver disease and to determine the diagnostic value of hub genes.

Methods: The gene expression dataset GSE89632 was retrieved from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) between the non-alcoholic steatohepatitis (NASH) group and the healthy group using the 'limma' package in R software and weighted gene co-expression network analysis. Gene ontology, kyoto encyclopedia of genes and genomes pathway, and single-sample gene set enrichment analyses were performed to identify functional enrichment of DEGs.

View Article and Find Full Text PDF

Red deer is a species of family Cervidae that is widely distributed in the world and is often raised to provide antlers, as a trophy or traditional medicine materials, and meat. Currently, the whole genomic data for red deer are very limited. Qingyuan Wapiti (QYW), China's first breed of red deer by artificial breeding, is well known for its high yield of antlers and large body size.

View Article and Find Full Text PDF

Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!