Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of the present contribution is twofold as it reports (i) on the role played by chitosan acetylation degree for the stability of nanoparticles (NPs) formed with hyaluronan and (ii) on the effect of the interaction of such NPs with immune cells. Chitosans with similar viscosity-average molecular weight, [Formula: see text], (i.e., 200 000) and different fractions of acetylated units ( F) together with low-molecular-weight hyaluronan were chosen for developing a select library of formulations via electrostatic complex coacervation. The resulting NPs were analyzed in terms of size, polydispersity, surface charge, and stability in physiological-mimicked media by dynamic light scattering. Only medium acetylated chitosan ( F = 0.16) guaranteed the stability of NPs. To explore the effect of NPs interaction with immune cells, the release of proinflammatory cytokines and the reactive oxygen species production by human macrophages and neutrophils, respectively, were evaluated. Strikingly, a structure-function relationship emerged, showing that NPs made of chitosans with F = 0.02, 0.25, 0.46, and 0.63 manifested a proinflammatory activity, linked to the instability of the system. Conversely, NPs made of chitosan with F = 0.16 neither modified the functional response of macrophages nor that of neutrophils. Of note, such NPs were found to possess additional properties potentially advantageous in applications such as delivery of therapeutics to target inflamed sites: (i) they are devoid of cytotoxic effects, (ii) they avoid engulfment during the early stage of interaction with macrophages, and (iii) they are muco-adhesive, thereby providing for site-specificity and long-residence effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b21791 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!