The 5d-electron honeycomb compound H_{3}LiIr_{2}O_{6} [K. Kitagawa et al., Nature (London) 554, 341 (2018)NATUAS0028-083610.1038/nature25482] exhibits an apparent quantum spin liquid state. In this intercalated spin-orbital compound, a remarkable pileup of low-energy states was experimentally observed in specific heat and spin relaxation. We show that a bond-disordered Kitaev model can naturally account for this phenomenon, suggesting that disorder plays an essential role in its theoretical description. In the exactly soluble Kitaev model, we obtain, via spin fractionalization, a random bipartite hopping problem of Majorana fermions in a random flux background. This has a divergent low-energy density of states of the required power-law form N(E)∝E^{-ν} with a drifting exponent which takes on the value ν≈1/2 for relatively strong bond disorder. Breaking time-reversal symmetry removes the divergence of the density of states, as does applying a magnetic field in experiment. We discuss the implication of our scenario, both for future experiments and from a broader perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.047202DOI Listing

Publication Analysis

Top Keywords

density states
12
spin liquid
8
low-energy density
8
kitaev model
8
bond-disordered spin
4
liquid honeycomb
4
honeycomb iridate
4
iridate h_{3}liir_{2}o_{6}
4
h_{3}liir_{2}o_{6} abundant
4
abundant low-energy
4

Similar Publications

Electronic ferroelectricity in monolayer graphene moiré superlattices.

Nat Commun

December 2024

Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.

Extending ferroelectric materials to two-dimensional limit provides versatile applications for the development of next-generation nonvolatile devices. Conventional ferroelectricity requires materials consisting of at least two constituent elements associated with polar crystalline structures. Monolayer graphene as an elementary two-dimensional material unlikely exhibits ferroelectric order due to its highly centrosymmetric hexagonal lattices.

View Article and Find Full Text PDF

The mechanical responses of sandy soil under dynamic loading is closely related to protective engineering and geotechnical engineering, is still not fully understood. To investigate the energy attenuation law and propagation velocity of compressed waves in dry sandy soil, this paper focuses on the dynamic response of compression waves in the specimen under single impact and repetitive impact conditions using an improved split Hopkinson pressure bar (SHPB). The results reveal that the length of the specimen follows an exponential relationship with the attenuation of the peak stress.

View Article and Find Full Text PDF

Microplastic is one of the most important environmental challenges of recent decades. Although the abundance of microplastics in water sources and water bodies such as the marine were investigated in many studies, knowing the sources of microplastics requires more studies. In this study, litter was investigated as one of the challenges of urban management and the sources of primary microplastic and secondary microplastic in the urban environment.

View Article and Find Full Text PDF

Triglyceride to high density lipoprotein cholesterol ratio and major adverse cardiovascular events in ACS patients undergoing PCI.

Sci Rep

December 2024

State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.

The triglyceride to high density lipoprotein cholesterol (TG/HDL-C) ratio has been consistently linked with the risk of coronary heart disease (CHD). Nevertheless, there is a paucity of studies focusing on acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI) or experiencing bleeding events. The study encompassed 17,643 ACS participants who underwent PCI.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!