Instant hydrogel formation of terpyridine-based complexes triggered by DNA via non-covalent interaction.

Nanoscale

College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.

Published: February 2019

Biomolecule-based hydrogels have potential use in a wide range of applications such as controlled drug release, tissue engineering, and biofabrication. Herein, driven by specific interactions between ds-DNA (double-stranded DNA) and Zn2+ based metal-complexes, we report that the use of DNA as cross-linkers can enhance interactions between self-assembling Zn2+ complexes containing terpyridine and sugar groups in the generation of bioinspired hydrogels from solutions or suspensions. The gelation process is fast and straightforward without tedious steps and happens at room temperature. Such a hydrogelation process of different Zn2+ complexes endows the visualized and selective DNA analogue discrimination. Several experiments suggest that the strong intercalation binding of Zn2+ complexes with ds-DNA results in the unzipping of ds-DNA into ss-DNA (single-stranded DNA), which further behave as linkers to enhance the intermolecular interactions of self-assembling Zn2+ complex molecules via coordination interactions. This work demonstrates an efficient and universal strategy to prepare hydrogels based on biomolecular recognition. Moreover, the DNA responsive behaviors of Zn2+ complexes are further compared with that of solutions and cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr08532cDOI Listing

Publication Analysis

Top Keywords

zn2+ complexes
16
interactions self-assembling
8
self-assembling zn2+
8
dna
6
zn2+
6
complexes
5
instant hydrogel
4
hydrogel formation
4
formation terpyridine-based
4
terpyridine-based complexes
4

Similar Publications

The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca, Mg, and Zn) on the stability of dalbavancin in acetate buffer was investigated. Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions after four weeks of storage at 5 °C and 55 °C was measured by RP-HPLC and HP-SEC; a longer-term study was carried out over six months at 5 °C, 25 °C, and 40 °C. Binding of 2HPβCD was characterized by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Cysimiditides: RiPPs with a Zn-Tetracysteine Motif and Aspartimidylation.

Biochemistry

January 2025

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.

Aspartimidylation is a post-translational modification found in multiple families of ribosomally synthesized and post-translationally modified peptides (RiPPs). We recently reported on the imiditides, a new RiPP family in which aspartimidylation is the class-defining modification. Imiditide biosynthetic gene clusters encode a precursor protein and a methyltransferase that methylates a specific Asp residue, converting it to aspartimide.

View Article and Find Full Text PDF

Bisquinoline-based fluorescent cadmium sensors.

Dalton Trans

January 2025

Laboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara 630-8506, Japan.

Rational molecular design afforded fluorescent Cd sensors based on bisquinoline derivatives. Introduction of three methoxy groups at the 5,6,7-positions of the quinoline rings of BQDMEN (,'-bis(2-quinolylmethyl)-,'-dimethylethylenediamine) resulted in the reversal of metal ion selectivity in fluorescence enhancement from zinc to cadmium. Introduction of bulky alkyl groups and an ,-bis(2-quinolylmethyl)amine structure, as well as replacement of one of the two tertiary amine binding sites with an oxygen atom and the use of a 1,2-phenylene backbone significantly improved the Cd specificity.

View Article and Find Full Text PDF

The human voltage-gated proton channel (H1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit H1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied H1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound.

View Article and Find Full Text PDF

Ultra-fast activated NH-intercalated vanadium oxide cathode for high-performance aqueous zinc-ion batteries.

J Colloid Interface Sci

December 2024

School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China. Electronic address:

Article Synopsis
  • Vanadium-based oxides show potential as cathode materials for aqueous zinc-ion batteries, but their activation typically takes hundreds of cycles to reach optimal performance.
  • The authors propose a new electrical activation strategy that significantly speeds up this activation process, allowing peak capacity to be achieved in just 5 to 25 cycles, even at high current densities.
  • The study highlights how this method improves ion transport and alters the material's structure and behavior, paving the way for more efficient and practical application of vanadium oxide cathodes in zinc-ion batteries.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!