Vibration of optics is one of the major limiting factors of the performance of state-of-the-art beamlines at low-emittance synchrotron facilities. We present a theoretical model with experimental data describing vibration-induced effects on x-ray beam coherence. Owing to the incoherent nature of vibration, the decrease in the beam spatial coherence perturbed by optics vibrations can be characterized by modeling the effective source profile of the vibrating beam. The measurements were carried out by using grating interferometry and a refractive lens with controlled vibration as test optics. The experimental results confirm the model and reveal the dependency of the measured beam spatial coherence on the acquisition time. The proposed method can be used to identify the eigenfrequency of the optical system as well as to optimize beamline operation and experimental conditions for coherence-related techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.44.000899DOI Listing

Publication Analysis

Top Keywords

beam coherence
8
beam spatial
8
spatial coherence
8
beam
5
influence optics
4
vibration
4
optics vibration
4
vibration synchrotron
4
synchrotron beam
4
coherence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!