A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Denitrification activity of polyphosphate accumulating organisms (PAOs) in full-scale wastewater treatment plants. | LitMetric

A comprehensive assessment of full-scale enhanced biological phosphorus removal (EBPR) plants (five plants, 19 independent tests) was undertaken to determine their effectiveness in terms of aerobic and anoxic P removal. By comparing parallel P uptake tests under only aerobic or under anoxic-aerobic conditions, results revealed that introducing an anoxic stage led to an overall P removal of on average 90% of the P removed under only aerobic conditions. This was achieved with negligible higher PHA and glycogen requirements, 30% lower overall oxygen consumption and with the simultaneous removal of nitrate, reducing up to an estimate of 70% of carbon requirements for simultaneous N and P removal. Varying fractions of denitrifying polyphosphate accumulating organisms (DPAOs), from an average of 25% to 84%, were found in different plants. No correlation was found between the DPAO fractions and EBPR configuration, season, or the concentration of any of the microbial groups measured via quantitative fluorescence in situ hybridisation. These included Type I and Type II Ca. Accumulibacter and glycogen accumulating organisms, suggesting that chemical batch tests are the best methodology for quantifying the potential of anoxic P removal in full-scale wastewater treatment plants.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2018.517DOI Listing

Publication Analysis

Top Keywords

accumulating organisms
12
polyphosphate accumulating
8
full-scale wastewater
8
wastewater treatment
8
treatment plants
8
anoxic removal
8
simultaneous removal
8
removal
6
plants
5
denitrification activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!