Allele-specific RNA-seq expression profiling of imprinted genes in mouse isogenic pluripotent states.

Epigenetics Chromatin

Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands.

Published: February 2019

AI Article Synopsis

  • Genomic imprinting is crucial for mammalian development, influencing gene expression based on parent origin, and this study assesses it through RNA-seq in embryos and pluripotent cell lines.
  • The findings reveal that while embryonic stem cells (ESCs) largely lose correct imprinted gene expression, epiblast stem cells (EpiSCs) derived from fertilized embryos maintain it better.
  • The research concludes by establishing a framework for identifying stem cell lines that properly sustain imprinted gene expression, which is important for understanding development and potential applications in regenerative medicine.

Article Abstract

Background: Genomic imprinting, resulting in parent-of-origin specific gene expression, plays a critical role in mammalian development. Here, we apply allele-specific RNA-seq on isogenic B6D2F1 mice to assay imprinted genes in tissues from early embryonic tissues between E3.5 and E7.25 and in pluripotent cell lines to evaluate maintenance of imprinted gene expression. For the cell lines, we include embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) derived from fertilized embryos and from embryos obtained after nuclear transfer (NT) or parthenogenetic activation (PGA).

Results: As homozygous genomic regions of PGA-derived cells are not compatible with allele-specific RNA-seq, we developed an RNA-seq-based genotyping strategy allowing identification of informative heterozygous regions. Global analysis shows that proper imprinted gene expression as observed in embryonic tissues is largely lost in the ESC lines included in this study, which mainly consisted of female ESCs. Differentiation of ESC lines to embryoid bodies or NPCs does not restore monoallelic expression of imprinted genes, neither did reprogramming of the serum-cultured ESCs to the pluripotent ground state by the use of 2 kinase inhibitors. Fertilized EpiSC and EpiSC-NT lines largely maintain imprinted gene expression, as did EpiSC-PGA lines that show known paternally expressed genes being silent and known maternally expressed genes consistently showing doubled expression. Notably, two EpiSC-NT lines show aberrant silencing of Rian and Meg3, two critically imprinted genes in mouse iPSCs. With respect to female EpiSC, most of the lines displayed completely skewed X inactivation suggesting a (near) clonal origin.

Conclusions: Altogether, our analysis provides a comprehensive overview of imprinted gene expression in pluripotency and provides a benchmark to allow identification of cell lines that faithfully maintain imprinted gene expression and therefore retain full developmental potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376749PMC
http://dx.doi.org/10.1186/s13072-019-0259-8DOI Listing

Publication Analysis

Top Keywords

gene expression
24
imprinted gene
20
imprinted genes
16
allele-specific rna-seq
12
cell lines
12
expression
9
imprinted
9
lines
9
genes mouse
8
embryonic tissues
8

Similar Publications

In order to investigate the impact of hot air (HA) treatment on the sugars and volatiles in postharvest nectarine fruit, nectarines were treated with HA at 40 °C for 4 h and stored at 1 °C for 35 days. Changes of sugars, free and glycosidically bound volatiles, β-glucosidase (β-Glu) activity, and the gene expression of UGT (UDP-glucosyltransferase) in nectarine fruit were determined. The results showed that compared with CK, HA treatment delayed the firmness decline of 48.

View Article and Find Full Text PDF

Mutagenicity, DNA Repair Gene Polymorphism, and Differentially Expressed Plasma Protein Fractions among Textile Dyeing Workers.

J Occup Environ Med

November 2024

Industrial Medicine and Occupational Health, Public Health and Community Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.

Objectives: This study aimed to assess mutagenicity biomarkers among Egyptian textile dyeing workers, their alteration with gene polymorphism, and the changes in plasma proteins' expression.

Methods: Using a detailed questionnaire, a comparative cross-sectional study was conducted on 212 workers (106 textile dyeing exposed group and 106 control group). CBMN-Cyt assay, ERCC2 gene polymorphism, and plasma protein fractions were analyzed in workers' blood samples.

View Article and Find Full Text PDF

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.

View Article and Find Full Text PDF

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

Proc Natl Acad Sci U S A

January 2025

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!