A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydraulic traits are more diverse in flowers than in leaves. | LitMetric

Hydraulic traits are more diverse in flowers than in leaves.

New Phytol

School of Forestry & Environmental Studies, Yale University, New Haven, CT, 06511, USA.

Published: July 2019

Maintaining water balance has been a critical constraint shaping the evolution of leaf form and function. However, flowers, which are heterotrophic and relatively short-lived, may not be constrained by the same physiological and developmental factors. We measured physiological parameters derived from pressure-volume curves for leaves and flowers of 22 species to characterize the diversity of hydraulic traits in flowers and to determine whether flowers are governed by the same constraints as leaves. Compared with leaves, flowers had high saturated water content, which was a strong predictor of hydraulic capacitance in both leaves and flowers. Principal component analysis revealed that flowers occupied a different region of multivariate trait space than leaves and that hydraulic traits are more diverse in flowers than in leaves. Without needing to maintain high rates of transpiration, flowers rely on other hydraulic traits, such as high hydraulic capacitance, to maintain turgor pressure. As a result, instead of employing a metabolically expensive but durable carbon (C)-based skeleton, flowers may rely predominantly on a metabolically cheaper, hydrostatic skeleton to keep their structures on display for pollinators, which has important implications for both the costs of reproduction and the biomechanical performance of flowers, particularly during drought.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15749DOI Listing

Publication Analysis

Top Keywords

hydraulic traits
16
flowers
12
leaves flowers
12
traits diverse
8
diverse flowers
8
flowers leaves
8
hydraulic capacitance
8
flowers rely
8
leaves
7
hydraulic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!