Extracellular vesicles (EVs) are small and heterogeneous membrane-bound structures released by cells and found in all biological fluids. They are effective intercellular communicators, acting on a number of close and/or distant target cells. EV cargo may reflect the cell of origin as well as the specific stress that induces their formation and release. They transport a variety of bioactive molecules, including messenger RNA, noncoding RNAs, proteins, lipids, and metabolites, that can be transferred among cells, regulating various cell responses. Alteration in the concentration and composition of EVs in biological fluids is a typical hallmark of pathologies in different liver diseases. Circulating EVs can serve as biomarkers or as messengers following uptake by other cells. This review is a meeting report from the International Liver Congress 2018 (European Association for the Study of the Liver) celebrated in Paris (Symposium: Extracellular vesicles and signal transmission) that discusses the role of EVs in several liver diseases, highlighting their potential value as disease biomarkers and therapeutic opportunities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357829 | PMC |
http://dx.doi.org/10.1002/hep4.1300 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.
Genomics
January 2025
Department of Psychiatry, First Hospital /First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.. Electronic address:
Background: Major depressive disorder (MDD) during adolescence significantly jeopardizes both mental and physical health. However, the etiology underlying MDD in adolescents remains unclear.
Methods: A total of 74 adolescents with MDD and 40 health controls (HCs) who underwent comprehensive clinical and cognitive assessments were enrolled.
Int J Biol Macromol
January 2025
The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China. Electronic address:
Extracellular vesicles (EVs) contain various glycans during their life cycle, from biogenesis to cellular recognition and uptake by recipient cells. EV glycosylation has substantial diagnostic significance in multiple health conditions, highlighting the necessity of determining an accurate glycosylation pattern for EVs from diverse biological fluids. Reliable and accessible glycan detection techniques help to elaborate the glycosylation-related functional alterations of specific proteins or lipids.
View Article and Find Full Text PDFMol Immunol
January 2025
Hebei Medical University, Shijiazhuang, Hebei 050011, China. Electronic address:
Esophageal squamous cell carcinoma (ESCC) is a common malignancy. Programmed death ligand 1 of small extracellular vesicles (sEV-PDL1) induce immune evasion and enhance tumor progression. However, the role of ESCC derived sEV-PDL1 in modulating CD8T cell remains unclear.
View Article and Find Full Text PDFClin Exp Immunol
January 2025
Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, A1B 3V6 Newfoundland and Labrador, Canada.
Introduction: Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the CNS, whereby clinical disease activity is primarily monitored by magnetic resonance imaging (MRI).
Methods: Given the limitations associated with implementing and acquiring novel and emerging imaging biomarkers in routine clinical practice, the discovery of biofluid biomarkers may offer a more simple and cost-effective measure that would improve accessibility, standardization, and patient care. Extracellular vesicles (EVs) are nanoparticles secreted from cells under both homeostatic and pathological states, and have been recently investigated as biomarkers in MS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!