Context: The immune checkpoint inhibitors (ICIs) nivolumab and pembrolizumab have shown dramatic efficacy with low toxicity in international studies of advanced solid cancers. No published Indian experience with ICIs exist other than isolated case reports.

Aims: The aim of this study is to evaluate real-world data about the efficacy and toxicity of ICIs in advanced solid cancers among Indian patients who have progressed on one or more prior lines of chemotherapy.

Materials And Methods: All patients with advanced solid cancers who received ICIs after the failure of chemotherapy at our center were retrospectively assessed. Information about efficacy and toxicity was collected and analyzed.

Results: The present study included 24 patients who had received ICIs for indications including non-small cell lung, bladder, head and neck, gastrointestinal, and unknown primary cancer. Patients had received a median of two prior lines of chemotherapy (range 1-5). Grade III or higher toxicity was seen in 8% of patients. Clinical benefit at 3 months was realized in 33% of evaluable patients. Twenty-six percentages of evaluable patients achieved a response, including one patient who achieved a complete response that is ongoing at 18 months. Median progression-free survival was 3 months, and median overall survival was 8 months at a median follow-up of 10 months. Among patients who achieved clinical benefit, the majority (84%) have an ongoing response at the time of data cutoff.

Conclusions: Efficacy and toxicity of ICIs in the Indian population are similar to the experience seen in large international cohorts, and Indian oncologists may feel reassured using these agents in similar settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348784PMC
http://dx.doi.org/10.4103/sajc.sajc_167_18DOI Listing

Publication Analysis

Top Keywords

advanced solid
16
solid cancers
16
efficacy toxicity
12
months median
12
immune checkpoint
8
checkpoint inhibitors
8
toxicity icis
8
patients
8
prior lines
8
received icis
8

Similar Publications

A Quantitative First Passage Time Model for Tubular Microfluidic Immunoassays.

ACS Sens

January 2025

Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Solid-phase immunosorbent reactions, such as ELISA, are widely used for detecting, identifying, and quantifying protein markers. However, traditional centimeter scale well-based immunoreactors suffer from low surface-to-volume (S/V) ratios, leading to large sample consumption and a long assay time. Microfluidic technologies, particularly tubular microfluidic immunoreactors, have emerged as promising alternatives due to their high S/V ratios.

View Article and Find Full Text PDF

Variation in cancer risk between organs can not be explained by the degree of somatic clonal expansion.

Adv Biotechnol (Singap)

May 2024

State Key Labratory of Biocontrol, School of Life Sciences, Sun Yat-San University, Guangzhou, 510275, China.

Somatic clonal expansion refers to the proliferation and expansion of a cell clone within a multicellular organism. Since cancer also results from the uncontrolled proliferation of few cell clones, it is generally believed that aging-associated somatic clonal expansion observed in normal tissues represents a precancerous condition. For instance, hematological malignancy is often preceded by clonal hematopoiesis.

View Article and Find Full Text PDF

Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44.

View Article and Find Full Text PDF

Liquid slide electrification: advances and open questions.

Soft Matter

January 2025

Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany.

This review is about drops of a liquid with high dielectric permittivity that slide over a solid surface with high electrical resistivity. A typical situation is a water drop sliding down a tilted hydrophobic plate. It has been realized recently that such drops spontaneously acquire a charge.

View Article and Find Full Text PDF

Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!