Low targeting efficiency limits the applications of nanoparticles in cancer therapy. The fact that mesenchymal stem cells (MSC) trapped in the lung after systemic infusion is a disadvantage for cell therapy purposes. Here, we utilized MSC as lung cancer-targeted drug delivery vehicles by loading nanoparticles (NP) with anti-cancer drug. MSC showed a higher drug intake capacity than fibroblasts. In addition, MSC showed predominant lung trapping in both rabbit and monkey. IR-780 dye, a fluorescent probe used to represent docetaxel (DTX) in NP, delivered MSC accumulated in the lung. Both MSC/A549 cell experiments and MSC/lung cancer experiments validated the intercellular transportation of NP between MSC and cancer cells. assays showed that the MSC/NP/DTX drug delivery system exerted primary tumor inhibition efficiency similar to that of a NP/DTX drug system. Collectively, the MSC/NP drug delivery system is promising for lung-targeted drug delivery for the treatment of lung cancer and other lung-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362298PMC
http://dx.doi.org/10.1016/j.apsb.2018.08.006DOI Listing

Publication Analysis

Top Keywords

drug delivery
20
lung cancer-targeted
8
drug
8
cancer-targeted drug
8
delivery system
8
msc
6
delivery
5
lung
5
efficient lung
4
delivery nanoparticle/msc
4

Similar Publications

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Patients with type 1 diabetes and their physicians have long desired a fully closed-loop artificial pancreas (AP) system that can alleviate the burden of blood glucose regulation. Although deep reinforcement learning (DRL) methods theoretically enable adaptive insulin dosing control, they face numerous challenges, including safety and training efficiency, which have hindered their clinical application. This paper proposes a safe and efficient adaptive insulin delivery controller based on DRL.

View Article and Find Full Text PDF

A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes.

J Am Chem Soc

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.

View Article and Find Full Text PDF

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!