Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles.

Acta Pharm Sin B

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau, China.

Published: January 2019

Nanoparticles are considered to be a powerful approach for the delivery of poorly water-soluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, rapid and scalable method, the flash nanoprecipitation (FNP) has been widely used to fabricate these drug nanoparticles, including pure drug nanocrystals, polymeric micelles, polymeric nanoparticles, solid lipid nanoparticles, and polyelectrolyte complexes. This review introduces the application of FNP to produce poorly water-soluble drug nanoparticles by controllable mixing devices, such as confined impinging jets mixer (CIJM), multi-inlet vortex mixer (MIVM) and many other microfluidic mixer systems. The formation mechanisms and processes of drug nanoparticles by FNP are described in detail. Then, the controlling of supersaturation level and mixing rate during the FNP process to tailor the ultrafine drug nanoparticles as well as the influence of drugs, solvent, anti-solvent, stabilizers and temperature on the fabrication are discussed. The ultrafine and uniform nanoparticles of poorly water-soluble drug nanoparticles prepared by CIJM, MIVM and microfluidic mixer systems are reviewed briefly. We believe that the application of microfluidic mixing devices in laboratory with continuous process control and good reproducibility will be benefit for industrial formulation scale-up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361851PMC
http://dx.doi.org/10.1016/j.apsb.2018.11.001DOI Listing

Publication Analysis

Top Keywords

drug nanoparticles
28
water-soluble drug
12
nanoparticles
11
flash nanoprecipitation
8
drug
8
mixing devices
8
mivm microfluidic
8
microfluidic mixer
8
mixer systems
8
application flash
4

Similar Publications

Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.

View Article and Find Full Text PDF

Prokinetic agents are drugs used to enhance gastrointestinal motility and treat disorders such as Gastroesophageal Reflux Disease (GERD) and gastroparesis. pH-dependent release systems offer targeted drug delivery, allowing prokinetic agents to be released specifically in desired regions of the gastrointestinal tract. This optimizes drug efficacy and minimizes systemic side effects.

View Article and Find Full Text PDF

Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.

Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.

View Article and Find Full Text PDF

Purpose: Improving drug solubility is crucial in formulating poorly water-soluble drugs, especially for oral administration. The incorporation of drugs into mesoporous silica nanoparticles (MSN) is widely used in the pharmaceutical industry to improve physical stability and solubility. Therefore, this study aimed to elucidate the mechanism of poorly water-soluble drugs within MSN, as well as evaluate the impact on the dissolution and physical stability.

View Article and Find Full Text PDF

Background: Nanoparticles of zinc oxide (ZnO-NPs) are frequently implemented in cosmetics, additives, and electronic devices. Moreover, their applications extend to water treatment, drug delivery, and cancer therapy. As a result, NP toxicity became an essential subject in biosafety research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!