Sonication induced amorphisation in Ag nanowires.

Sci Rep

Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.

Published: February 2019

It has long been conjectured that pure-element face-centred cubic (fcc) metals can be transformed into a glassy state by deformation at ultra-high strain rates. However, when an impact force is applied at the nanoscale, deformation-induced melting prevents observations of fcc metal amorphisation. Here we propose a sonication treatment of Ag nanowires (fcc) and confirmed amorphisation induced by high strain rates at bent areas of the Ag nanowires. Owing to the mismatch of the deformation modes between the core and the surface, we observed a diameter related increase of the ductility of Ag nanowires under deformation at ultra-high strain rates generated by sonication. The sonication-prepared amorphous Ag was stable at room temperature. Amorphous Ag at the bent areas was highly reactive and was readily recrystallized under light illumination or vulcanised. Our study verifies the occurrence of high strain rate induced amorphisation in pure fcc MGs and provides a powerful tool for mechanical studies on metal nanomaterials under extremely high strain rates and forces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375950PMC
http://dx.doi.org/10.1038/s41598-019-38863-6DOI Listing

Publication Analysis

Top Keywords

strain rates
16
high strain
12
induced amorphisation
8
deformation ultra-high
8
ultra-high strain
8
bent areas
8
strain
5
sonication induced
4
amorphisation
4
nanowires
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!