Various treatment methods for tracheal defects have been attempted, such as artificial implants, allografts, autogenous grafts, and tissue engineering; however, no perfect method has been established. We attempted to create an effective artificial trachea via a tissue engineering method using 3D bio-printing. A multi-layered scaffold was fabricated using a 3D printer. Polycaprolactone (PCL) and hydrogel were used with nasal epithelial and auricular cartilage cells in the printing process. An artificial trachea was transplanted into 15 rabbits and a PCL scaffold without the addition of cells was transplanted into 6 rabbits (controls). All animals were followed up with radiography, CT, and endoscopy at 3, 6, and 12 months. In the control group, 3 out of 6 rabbits died from respiratory symptoms. Surviving rabbits in control group had narrowed tracheas due to the formation of granulation tissue and absence of epithelium regeneration. In the experimental group, 13 of 15 animals survived, and the histologic examination confirmed the regeneration of epithelial cells. Neonatal cartilage was also confirmed at 6 and 12 months. Our artificial trachea was effective in the regeneration of respiratory epithelium, but not in cartilage regeneration. Additional studies are needed to promote cartilage regeneration and improve implant stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375946 | PMC |
http://dx.doi.org/10.1038/s41598-019-38565-z | DOI Listing |
Background: We investigate the feasibility of using artificial intelligence (AI) to identify the recurrent laryngeal nerve (RLN) during endoscopic thyroid surgery and evaluated its accuracy.
Methods: In this retrospective study, we develop an AI model using a dataset of endoscopic thyroid surgery videos, including hemithyroidectomy procedures performed between April 2019 and September 2023 at the National Cancer Center Hospital East, Chiba, Japan. Semantic segmentation deep learning methods were applied to analyze the endoscopic thyroid surgery videos.
Cell Reprogram
December 2024
Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Tracheal reconstruction is necessary in patients with large tracheal defects. Previously, artificial tracheae made of polypropylene and collagen sponge have been used clinically by our group. As a basic research aimed at promoting epithelialization for infection defense, we transplanted cell sheets of human induced pluripotent stem cell (hiPSC)-derived airway epithelial cells (iAECs) with artificial tracheae into tracheal defects of rats and confirmed their engraftment.
View Article and Find Full Text PDFBiofabrication
November 2024
Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
In this present study, we introduce an innovative hybrid 3D bioprinting methodology that integrates fused deposition modeling (FDM) with top-down digital light processing (DLP) for the fabrication of an artificial trachea. Initially, polycaprolactone (PCL) was incorporated using an FDM 3D printer to provide essential mechanical support, replicating the structure of tracheal cartilage. Subsequently, a chondrocyte-laden glycidyl methacrylated silk fibroin hydrogel was introduced via top-down DLP into the PCL scaffold (PCL-Sil scaffold).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212.
Continuously monitoring human airway conditions is crucial for timely interventions, especially when airway stents are implanted to alleviate central airway obstruction in lung cancer and other diseases. Mucus conditions, in particular, are important biomarkers for indicating inflammation and stent patency but remain challenging to monitor. Current methods, reliant on computational tomography imaging and bronchoscope inspection, pose risks due to radiation and lack the ability to provide continuous real-time feedback outside of hospitals.
View Article and Find Full Text PDFRinsho Shinkeigaku
November 2024
Department of Neurology, Sayama Neurological Hospital.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!