AI Article Synopsis

  • Doxorubicin (Dox) is an effective cancer treatment but can lead to heart issues like acute ventricular dysfunction and chronic cardiomyopathy.
  • Researchers studied changes in autophagy and mitochondrial function in mouse models to understand the progression of Dox-related heart problems.
  • Findings revealed that Dox treatment caused an accumulation of autophagosomes due to impaired lysosomal degradation, leading to mitochondrial dysfunction and reduced oxygen consumption in heart cells.

Article Abstract

Doxorubicin (Dox) is a highly effective anticancer drug but cause acute ventricular dysfunction, and also induce late-onset cardiomyopathy and heart failure. Despite extensive studies, the pathogenic sequelae leading to the progression of Dox-associated cardiomyopathy remains unknown. We assessed temporal changes in autophagy, mitochondrial dynamics, and bioenergetics in mouse models of acute and chronic Dox-cardiomyopathy. Time course study of acute Dox-treatment showed accumulation of LC3B II in heart lysates. Autophagy flux assays confirmed that the Dox-induced accumulation of autophagosomes occurs due to blockage of the lysosomal degradation process. Dox-induced autophagosomes and autolysosome accumulation were confirmed in vivo by using GFP-LC3 and mRFP-GFP-LC3 transgenic (Tg) mice. Mitochondria isolated from acute Dox-treated hearts showed significant suppression of oxygen consumption rate (OCR). Chronic Dox-cardiotoxicity also exhibited time-dependent accumulation of LC3B II levels and increased accumulation of green puncta in GFP-LC3 Tg hearts. Mitochondria isolated from chronic Dox-treated hearts also showed significant suppression of mitochondrial OCR. The in vivo impairment of autophagic degradation process and mitochondrial dysfunction data were confirmed in vitro using cultured neonatal cardiomyocytes. Both acute and chronic Dox-associated cardiomyopathy involves a multifocal disease process resulting from autophagosomes and autolysosomes accumulation, altered expression of mitochondrial dynamics and oxidative phosphorylation regulatory proteins, and mitochondrial respiratory dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376057PMC
http://dx.doi.org/10.1038/s41598-018-37862-3DOI Listing

Publication Analysis

Top Keywords

degradation process
12
autophagic degradation
8
dox-associated cardiomyopathy
8
mitochondrial dynamics
8
acute chronic
8
accumulation lc3b
8
mitochondria isolated
8
dox-treated hearts
8
hearts suppression
8
mitochondrial
6

Similar Publications

Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology.

View Article and Find Full Text PDF

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

Establishment and application of a zebrafish model of Werner syndrome identifies sapanisertib as a potential antiaging drug.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200438, China.

Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named (), harboring a mutation in the - () gene. Loss of leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration.

View Article and Find Full Text PDF

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

Suppressed Degradation Process of PBDB-TF-T1:BTP-4F-12-Based Organic Solar Cells with Solid Additive Atums Green.

ACS Appl Mater Interfaces

January 2025

Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.

Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!