Targeting cholesterol metabolism in glioblastoma: a new therapeutic approach in cancer therapy.

J Investig Med

Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.

Published: April 2019

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor known with a poor survival rate despite current advances in the field of cancer. Additional research into the pathophysiology of GBM is urgently needed given the devastating nature of this disease. Recent studies have revealed the unique cellular physiology of GBM cells as compared with healthy astrocytes. Intriguingly, GBM cells are incapable of de novo cholesterol synthesis via the mevalonate pathway. Thus, the survival of GBM cells depends on cholesterol uptake via low-density lipoprotein receptors (LDLRs) in the form of apolipoprotein-E-containing lipoproteins and ATP-binding cassette transporter A1 (ABCA1) that efflux surplus cholesterol out of cells. Liver X receptors regulate intracellular cholesterol levels in neurons and healthy astrocytes through changes in the expression of LDLR and ABCA1 in response to cholesterol and its derivatives. In GBM cells, due to the dysregulation of this surveillance pathway, there is an accumulation of intracellular cholesterol. Furthermore, intracellular cholesterol regulates temozolomide-induced cell death in glioblastoma cells via accumulation and activation of death receptor 5 in plasma membrane lipid rafts. The mevalonate pathway and autophagy flux are also fundamentally related with implications for cell health and death. Thus, via cholesterol metabolism, the mevalonate pathway may be a crucial player in the pathogenesis and treatment of GBM where our current understanding is still lacking. Targeting cholesterol metabolism in GBM may hold promise as a novel adjunctive clinical therapy for this devastating cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jim-2018-000962DOI Listing

Publication Analysis

Top Keywords

gbm cells
16
cholesterol metabolism
12
mevalonate pathway
12
intracellular cholesterol
12
cholesterol
9
targeting cholesterol
8
gbm
8
healthy astrocytes
8
cells
6
metabolism glioblastoma
4

Similar Publications

HIF-1α Mediated Regulation of Glioblastoma Malignant Phenotypes through CD47 Protein: Understanding Functions and Mechanisms.

J Cancer

January 2025

Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.

Glioblastoma (GBM) is a highly invasive and malignant primary intracranial tumor originating from glial cells, and it is associated with an extremely poor clinical prognosis. The hypoxic conditions within GBM promote various tumor cell processes such as angiogenesis, proliferation, migration, invasion, and drug resistance. A key aspect of tumor adaptation to the hypoxic environment and the promotion of malignant behaviors is the regulation of HIF-1α signaling pathways.

View Article and Find Full Text PDF

Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.

View Article and Find Full Text PDF

A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.

View Article and Find Full Text PDF

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

HERC5/ISG15 Enhances Glioblastoma Stemness and Tumor Progression by mediating SERBP1protein stability.

Neuromolecular Med

January 2025

Department of Neurosurgery, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan Province, China.

Glioblastoma (GBM) is the most common malignant brain tumor, and has a low survival rate and a poor prognosis. Intensive studies of pathogenic mechanisms are essential for exploring therapeutic targets for GBM. In this study, the roles played by interferon-stimulated gene 15 (ISG15), HECT, RCC1-containing protein 5 (HERC5), and SERPINE1 mRNA binding protein 1 (SERBP1) in regulating GBM cell stemness were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!