Incorporation of microencapsulated hydrophilic and lipophilic nutrients into foods by using ultrasound as a pre-treatment for drying: A prospective study.

Ultrason Sonochem

Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), Piracicaba, SP, Brazil. Electronic address:

Published: June 2019

The present work proposes using the ultrasound technology to incorporate microencapsulated nutrients during pre-treatments for drying of food products. Both hydrophilic and lipophilic nutrients were evaluated: incorporation of microcapsules of iron (obtained by spray drying using maltodextrin as wall material) and carotenoids (obtained by hot emulsification and solidification using hydrogenated palm oil as wall material). The ultrasound pre-treatment was applied in water and ethanol, where the microcapsules were dispersed, and food samples were immersed. Pumpkin and apple were selected as suitable food material to perform the iron and carotenoid incorporation, respectively. Ultrasound allowed more homogeneous iron incorporation in pumpkin. The iron content increased more than 1000% in pre-treated samples compared to control. In the same manner, carotenoid content increased in about 430% when ultrasound was applied. After drying, the carotenoid content decreased by 65% in control samples. However, better carotenoid retention was obtained after drying in ultrasound processed samples. The results show that pre-treatment with ultrasound can be used to incorporate nutrients into the food matrix, increasing not only the incorporated quantity but also promoting their preservation. Nevertheless, future studies must be performed to determine the nutrient bioavailability and bioaccessibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2019.02.004DOI Listing

Publication Analysis

Top Keywords

hydrophilic lipophilic
8
lipophilic nutrients
8
ultrasound pre-treatment
8
wall material
8
content increased
8
carotenoid content
8
ultrasound
7
drying
5
incorporation
4
incorporation microencapsulated
4

Similar Publications

Saponins are compounds composed of lipophilic aglycones linked to hydrophilic sugars. Natural saponins are isolated from plants and some Marine organisms. As important cholesterol-lowering drugs, natural saponins have attracted wide attention for their therapeutic potential in a variety of cholesterol-related metabolic diseases.

View Article and Find Full Text PDF

Background: An explicit molecular level understanding of Alzheimer's Disease (AD) remains elusive. What initiates the disease and why does it progress? Answering these questions will be crucial to the development of much needed new diagnostics and therapeutics. Though the amyloid hypothesis is often debated, recent biologic trial results support a role for Aβ in AD pathogenesis.

View Article and Find Full Text PDF

Highly flexible free-standing bacterial cellulose-based filter membrane with tunable wettability for high-performance water purification.

Int J Biol Macromol

December 2024

Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China. Electronic address:

Water purification has always been a critical yet challenging issue. In this study, an organic-inorganic composite membrane was developed using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (BC) nanofibers and hydroxyapatite nanowires (HAPNW) with tunable wettability for advanced membrane separation applications. The resulting free-standing TEMPO-BC/HAPNW filter membrane exhibited strong mechanical strength, high flexibility, exceptional deformability, and a high pure water flux of up to 800 L·m·h due to its porous architecture and inherent hydrophilicity.

View Article and Find Full Text PDF

Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments.

Pharmacol Ther

December 2024

Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.. Electronic address:

G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease with a significant risk of developing hepatocellular carcinoma (HCC). Recent clinical evidence indicates the potential benefits of statins in cancer chemoprevention and therapeutics. However, it is still unclear if these drugs can lower the specific risk of HCC among patients with MASLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!