Dendritic cells (DC) are responsible for the initiation and shaping of the adaptive immune response and are in the focus of autoimmunity research. We were interested in comparison of DC obtained from autoimmunity-prone Dark Agouti (DA) rats and autoimmunity-resistant Albino Oxford (AO) rats. DC were generated from bone marrow precursors and matured (mDC) by lipopolysaccharide. Tolerogenic DC (tolDC) obtained by vitamin D3 treatment were studied in parallel. Profile of cytokine production was different in AO and DA mDC and tolDC. Expression of MHC class II molecules and CD86 were higher in DA DC, while vitamin D3 reduced their expression in dendritic cells of both strains. Allogeneic proliferation of CD4 T cells was reduced by AO tolDC, but not with DA tolDC in comparison to respective mDC. Finally, expression of various genes identified as differentially expressed in human mDC and tolDC was also analyzed in AO and DA DC. Again, AO and DA DC differed in the expression of the analyzed genes. To conclude, AO and DA DC differ in production of cytokines, expression of antigen presentation-related molecules and in regulation of CD4 T proliferation. The difference is valuable for understanding the divergence of the strains in their susceptibility to autoimmunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2019.01.001DOI Listing

Publication Analysis

Top Keywords

dendritic cells
12
mdc toldc
8
toldc
5
expression
5
comparison dendritic
4
cells
4
cells autoimmunty-prone
4
autoimmunty-prone resistant
4
resistant rats
4
rats dendritic
4

Similar Publications

Unlabelled: SARS-CoV-2 infection induces interferon (IFN) response by plasmacytoid dendritic cells (pDCs), but the underlying mechanisms are poorly defined. Here, we show that the bulk of the IFN-I release comes from pDC sensing of infected cells and not cell-free virions. Physical contact (or conjugates) between pDCs and infected cells is mediated through CD54-CD11a engagement, and such conjugate formation is required for efficient IFN-I production.

View Article and Find Full Text PDF

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a very rare and aggressive hematologic malignancy, arising from plasmacytoid dendritic cells (pDCs). BPDCN frequently has, at least initially, exclusively cutaneous presentation. We present a 45-year-old woman with a 3-month history of rapidly evolving violaceous patches, infiltrated plaques, and bruise-like tumefactions, disseminated on her face and upper trunk.

View Article and Find Full Text PDF

Unlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.

View Article and Find Full Text PDF

Myeloid cells meet CD8 T cell exhaustion in cancer: What, why and how.

Chin J Cancer Res

December 2024

School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China.

Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8 T cell (CD8 Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8 T cell exhaustion.

View Article and Find Full Text PDF

Tissue-resident memory T (T) cells are crucial components of the immune system that provide rapid, localized responses to recurrent pathogens at mucosal and epithelial barriers. Unlike circulating memory T cells, T cells are located within peripheral tissues, and they play vital roles in antiviral, antibacterial, and antitumor immunity. Their unique retention and activation mechanisms, including interactions with local epithelial cells and the expression of adhesion molecules, enable their persistence and immediate functionality in diverse tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!