A novel flexible electrospun nanofiber/-Fe₂O₃ composite has been obtained from suspension of -Fe₂O₃ nanoparticles in polyvinylpyrolidone solution in dimethylformamide. The impedance spectroscopy of the synthesized nanofiber/-Fe₂O₃ composite was carried out. Negative magnetoresistance and giant magnetocapacitance effects, as well as phenomenon of a "negative capacitance" at room temperature were observed in magnetic field (2.75 Oe) in infra-low frequency range. The polarization properties and volt-ampere characteristics of the nanocomposite in the applied magnetic field indicate the increase in the dielectric permittivity and the emergence of spin electromotive force, which enables us to accumulate of electric energy at quantum level. A quantum-mechanical model, which explained the non-monotonous behaviour of the volt-ampere characteristic of the novel nanofiber based composite, has been suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.16302DOI Listing

Publication Analysis

Top Keywords

nanofiber/-fe₂o₃ composite
8
magnetic field
8
fabrication 1d-nanofiber/fe₂o₃
4
1d-nanofiber/fe₂o₃ composites
4
composites tailored
4
tailored magnetic
4
magnetic properties
4
properties novel
4
novel flexible
4
flexible electrospun
4

Similar Publications

The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide-molybdenum disulfide (ZnO-MoS) grown on polyimide (PI) nanofibers by combining electrospinning, a high-pressure hydrothermal process, and in situ growth. Unlike simple composite nanoparticles, the structure is shown in PI-ZnO to be like the skeleton of a tree for the growth of MoS "leaves" as macro-materials with controlled microstructures.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Anisotropic nanocellulose-based aerogels for radiative cooling.

Int J Biol Macromol

January 2025

College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China. Electronic address:

To this day, energy conservation, emission reduction, and environmental protection continue to be goals pursued by humanity. Passive radiation cooling, as a zero-consumption refrigeration technology, offers substantial opportunities for reducing global energy consumption and carbon dioxide emissions. It is of great significance to develop high-performance passive radiation cooling materials from sustainable materials.

View Article and Find Full Text PDF

Confining CoSe/MoSe2 Heterostructures in Interconnected Carbon Polyhedrons for Superior Potassium Storage.

ChemSusChem

January 2025

Jilin University, School of Materials Science and Engineering, Renmin street 5988, School of Materials Science and Engineering, Jilin University, 130022, Changchun, CHINA.

Metal selenides hold promise as feasible anode materials for potassium-ion batteries (PIBs), but still face problems such as poor potassium storage kinetics and dramatic volume expansion. Coupling heterostructure engineering with structural design could be an effective strategy for rapid and stable K+ storage. Herein, CoSe/MoSe2 heterojunction encapsulated in nitrogen-doped carbon polyhedron and further interconnected by three-dimensional nitrogen-doped carbon nanofibers (CoMoSe@NCP/NCFs) is ingeniously constructed.

View Article and Find Full Text PDF

Nanocellulose-reinforced nanofiber composite poly(aryl ether ketone) polymer electrolyte for advanced lithium batteries.

Int J Biol Macromol

January 2025

Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130024, PR China. Electronic address:

Solid polymer batteries (SPEs) are highly desirable for energy storage because of the urgent need for higher energy density and safer lithium ion batteries (LIBs). In this work, the single-ion lithium salt PAEK-LiCPSI was synthesized by grafting 3-chloropropanesulfonyl trifluoromethanesulimide lithium (LiCPSI) onto poly(aryl ether ketone) (PAEK). Nanocellulose (NCC), PAEK-LiCPSI, and poly(vinylidene fluoride) (PVDF-HFP) were compounded to obtain NCC reinforced high-performance nanofiber composite polymer electrolytes (NCC/PAEK/PVDF) through electrospinning, which presented tensile strength of 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!