Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2.

Clin Epigenetics

Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.

Published: February 2019

Background: Nearly 25% of long intergenic non-coding RNAs (lincRNAs) recruit chromatin-modifying proteins (e.g., EZH2) to silence target genes. HOX antisense intergenic RNA (HOTAIR) is deregulated in diverse cancers and could be an independent and powerful predictor of eventual metastasis and death. Yet, it is challenging to develop small molecule drugs to block activity of HOTAIR with high specificity in a short time.

Results: Our previous study proved that the 5' domain, but not its 3' domain, was the function domain of HOTAIR responsible for tumorigenesis and metastasis in glioblastoma and breast cancer, by recruiting and binding EZH2. Here, we targeted to establish a structure-based methodology to identify lead compounds of HOTAIR, by abrogating scaffold interactions with EZH2. And a small compound AC1NOD4Q (ADQ) was identified by high-throughput molecular docking-based virtual screening of the PubChem library. Our analysis revealed that ADQ was sufficiently and specifically interfering HOTAIR/EZH2 interaction, thereby impairing the H3K27-mediated tri-methylation of NLK, the target of HOTAIR gene, and consequently inhibiting tumor metastasis through Wnt/β-catenin pathway in vitro and in orthotopic breast cancer models. The results of RIP and EMSA further revealed that 36G46A of 5' domain was the essential binding site for ADQ exerted its inhibitory effect, further narrowed the structure and function of HOTAIR from the 5' functional domain to the micro-domain.

Conclusions: Our findings suggest of a potential new strategy to discover the lead compound for targeted lincRNA therapy and potentially pave the way for exploiting ADQ as a scaffold for more effective small molecule drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376746PMC
http://dx.doi.org/10.1186/s13148-019-0624-2DOI Listing

Publication Analysis

Top Keywords

block activity
8
activity hotair
8
hotair abrogating
8
abrogating scaffold
8
small molecule
8
molecule drugs
8
breast cancer
8
hotair
7
domain
5
targeted design
4

Similar Publications

Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE-2) is synthesised by cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). PGE-2 exhibits pro-inflammatory properties in inflammatory conditions. However, there remains limited understanding of the COX-2/mPGES-1/PGE-2 pathway in Angiostrongylus cantonensis-induced meningoencephalitis.

View Article and Find Full Text PDF

The ABILHAND is a widely used questionnaire assessing bimanual daily life activities in adults with stroke. A recently modified version tailored for the sub-Saharan African population (ABILHAND-Stroke Benin) has been created. This study aimed to investigate its test-retest reliability and responsiveness.

View Article and Find Full Text PDF

New hybrids were synthesised by linking carboranes and siloles, both of which are known as aggregation-induced emission active units. Although most of the newly synthesised systems do not display notable quantum yield either in solution or in the aggregated state, they emit strongly in the solid-state, and a quantum yield of up to 100% can be achieved. The tailorable quantum yield can be attributed to the packing of the molecules in the crystal lattice ruled by the carborane and phenyl moieties according to the SC-XRD data.

View Article and Find Full Text PDF

Sensitivity of Functional Arterial Spin Labelling in Detecting Cerebral Blood Flow Changes.

Br J Hosp Med (Lond)

December 2024

Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China.

Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!