Chronic Atrial and Ventricular Pacing in the Mouse.

Circ Heart Fail

Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (M.S., R.N., D.B., G.Z., B.L.L., A.S., D.I.L., D.A.K.).

Published: February 2019

Background: The mouse is the most widely used mammal in experimental biology. Although many clinically relevant in vivo cardiac stressors are used, one that has eluded translation is long-term cardiac pacing. Here, we present the first method to chronically simulate and simultaneously record cardiac electrical activity in conscious mobile mice. We then apply it to study right ventricular pacing induced electromechanical dyssynchrony and its reversal (resynchronization).

Methods And Results: The method includes a custom implantable bipolar stimulation and recording lead and flexible external conduit and electrical micro-commutator linked to a pulse generator/recorder. This achieved continuous pacing for at least 1 month in 77% of implants. Mice were then subjected to cardiac ischemia/reperfusion injury to depress heart function, followed by 4 weeks pacing at the right ventricle (dyssynchrony), right atrium (synchrony), or for 2 weeks right ventricle and then 2 weeks normal sinus (resynchronization). Right ventricular pacing-induced dyssynchrony substantially reduced heart and myocyte function compared with the other groups, increased gene expression heterogeneity (>10 fold) comparing septum to lateral walls, and enhanced growth and metabolic kinase activity in the late-contracting lateral wall. This was ameliorated by restoring contractile synchronization.

Conclusions: The new method to chronically pace conscious mice yields stable atrial and ventricular capture and a means to dissect basic mechanisms of electromechanical physiology and therapy. The data on dyssynchrony and resynchronization in ischemia/reperfusion hearts is the most comprehensive to date in ischemic heart disease, and its similarities to nonischemic canine results support the translational utility of the mouse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513021PMC
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.118.005655DOI Listing

Publication Analysis

Top Keywords

atrial ventricular
8
ventricular pacing
8
method chronically
8
pacing
5
chronic atrial
4
ventricular
4
pacing mouse
4
mouse background
4
background mouse
4
mouse mammal
4

Similar Publications

Generation of a PDK-1 knockout human embryonic stem cell line by CRISPR/(WAe009-A-2K) Cas9 editing.

Stem Cell Res

December 2024

Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China. Electronic address:

Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1/) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development.

View Article and Find Full Text PDF

Purpose: Research on the safety and efficacy of del Nido cardioplegia in adult patients with reduced left ventricular ejection fraction (LVEF) is limited. We evaluated the effect of del Nido cardioplegia on early outcomes of cardiac surgery in this cohort.

Methods: PubMed, Scopus, and the Cochrane Central Register of Controlled Trials were searched through August 2024 to conduct a meta-analysis comparing del Nido to other cardioplegia in adult patients with reduced LVEF (≤50%).

View Article and Find Full Text PDF

Large Variations in Phenylalanine Concentrations Associate Adverse Cardiac Remodelling in Adult Patients With Phenylketonuria-A Long-Term CMR Study.

J Cachexia Sarcopenia Muscle

February 2025

Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany.

Background: Despite a phenylalanine (Phe) restrictive diet, most adult patients with 'classical' phenylketonuria (PKU) maintain life-long Phe concentrations above the normal range and receive tyrosine (Tyr) and protein-enriched diets to maintain acceptable concentrations and ensure normal development. While these interventions are highly successful in preventing adverse neuropsychiatric complications, their long- term consequences are incompletely explored. We observed early cardiomyopathic characteristics and associated hemodynamic changes in adult PKU patients and present here the results of a longitudinal evaluation of cardiac phenotype.

View Article and Find Full Text PDF

Objective: Although left ventricular hypertrophy frequently accompanies end-stage renal disease, heart failure (HF) with reduced ejection fraction (EF) is also observed in a subset of patients. In those patients kidney transplantation (KT) is generally avoided due to an increased risk of mortality in addition to the risks associated with HF. This prospective study was designed to follow patients with HF who were being prepared for KT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!