In 2007 and 2008, disease symptoms were observed on four cultivars of chickpea (Cicer arietinum L.), including two of the most popular cultivars grown in Syria (Ghab 3 and Ghab 4), in a replicated on-farm trial conducted in the fertile Al Ghab Plains. Affected plants exhibited chlorosis of the foliage, vascular discoloration, and death. In both years, plant mortality reached 100% in plots of cvs. ICC 12004, Ghab 3, and Ghab 4, but only 60% in plots of cv. ILC 97-706. Five monosporic isolates obtained from surface-disinfested stems and roots were identified morphologically. All micromorphological characteristics indicated that the isolated fungi fit the description of Clonostachys rhizophaga Schroers (1). Wilting of chickpea was widespread in the area, and fungal isolations from a random sample of diseased plants in neighboring farmers' fields revealed the presence of C. rhizophaga. In culture, isolates formed dimorphic, Verticillium-like (primary) or penicillate (secondary) conidiophores and ovoidal to elongate, slightly curved or asymmetrical, 5 to 9 μm long and 2.5 to 3.5 μm wide conidia showing a slightly laterally displaced hilum. The identification of the five isolates as C. rhizophaga was supported by sequencing approximately 600 bp of the β-tubulin gene (tub2). Two representative sequences have been deposited under GenBank, Accession No. FJ593882 for strain CBS 124507 and No. FJ593883 for CBS 124511. Both were 100% similar to the sequence of C. rhizophaga strain CBS 361.77 (GenBank Accession No. AF358158) but differed by a deletion of 2 nucleotides relative to the ex-type strain of C. rhizophaga, CBS 202.37 (GenBank Accession No. AF358156). Two methods were used to inoculate plants and complete Koch's postulates. Method 1 used a 10-mm-diameter mycelial plug to inoculate healthy 3-day-old seedlings grown on 40 ml of Hoagland nutrient agar medium in a glass tube (one seedling per tube). The plug was placed mycelial-side down on the surface of the medium, and the fungus subsequently colonized the medium and penetrated the plant roots. Method 2 involved mixing autoclaved seed that had been colonized by each isolate with sterilized soil (1:12 vol/vol) prior to transplanting healthy seedlings into the soil mix. Thirty plants of each cultivar were tested per isolate per method, and controls received sterile agar plugs or autoclaved chickpea seed only. Irrespective of inoculation method, all five isolates caused wilt and plant death of all cultivars within 15 days (method 1) or 2 months (method 2) postinoculation. Symptoms were similar to those originally observed in the field and controls remained healthy. C. rhizophaga was recovered from all affected plants. To our knowledge, this is the first report of C. rhizophaga as a pathogen of chickpea. In an earlier report, C. rhizophaga (as Verticillium rhizophagum Tehon & Jacobs, nom. invalid.) was identified as the causal agent of a disastrous disease of Ulmus americana in Ohio (2). C. rhizophaga has been reported from Chile, Ecuador, the United States, and Switzerland (1). References: (1) H.-J. Schroers. Stud. Mycol. 46:85, 2001. (2) L.-R. Tehon and H. L. Jacobs. Bull. Davey Tree Expert Company, Kent, OH. 6:3, 1936.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-93-6-0666ADOI Listing

Publication Analysis

Top Keywords

genbank accession
12
rhizophaga
10
clonostachys rhizophaga
8
ghab ghab
8
strain cbs
8
report rhizophaga
8
tehon jacobs
8
method
6
ghab
5
plants
5

Similar Publications

Optimization and characterization studies of poultry waste valorization for peptone production using a newly Egyptian Bacillus subtilis strain.

AMB Express

January 2025

Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.

Valorization of poultry waste is a significant challenge addressed in this study, which aimed to produce cost-effective and sustainable peptones from poultry waste. The isolation process yielded the highly potent proteolytic B.subtilis isolate P6, identified through 16S rRNA gene sequencing to share 94% similarity with the B.

View Article and Find Full Text PDF

Hawthorn () is an important economic fruit and Chinese medicinal plant, which is widely distributed in the northern China. In early July 2024, a fruit rot disease was observed on the young fruits of hawthorn in a park of Shouguang, Shandong Province, China (36°53'42.16″N, 118°47'22.

View Article and Find Full Text PDF

First report of causing leaf spot on in China.

Plant Dis

January 2025

Guizhou University, Guizhou University, Guiyang, Guiyang, Guizhou, China, 550025;

During a field study in the Baili Azalea Forest Area in Guizhou Province, China (27°12'N, 105°48'E) between May and July 2023, symptoms of leaf spot were observed on Franch. The incidence of leaf spot on leaves was about 12% in a field of 1 hm2, significantly reducing their ornamental and economic value. The affected leaves bore irregular, grey-white lesions with distinct dark brown borders, accompanied by black conidiomata.

View Article and Find Full Text PDF

Polygonatum cyrtonema Hua (Duohua Huangjing, Asparagaceae in angiosperms) is a traditional medicinal and edible plant in China. Its rhizomes can potentially enhance immunity, reduce tumor growth and the effects of aging, improve memory, and even reduce blood sugar levels (Zhao et al. 2020).

View Article and Find Full Text PDF

The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!