FoxO proteins in pancreatic β-cells as potential therapeutic targets in diabetes.

Expert Rev Endocrinol Metab

b Fondation pour Recherches Médicales, Medical Faculty, University of Geneva, 64 ave de la Roseraie, 1211 Geneva, Switzerland.

Published: March 2008

Diabetes results from complete (Type 1) or progressive (Type 2) insulin insufficiency. Resulting chronic and acute hyperglycemia are thus prevented mainly by insulin injections, a therapy that is care intensive, costly and does not abolish vascular damage, with severe consequences for the patient in the long term. In view of the epidemic spread of the disease, diabetes is considered a major threat for public healthcare systems. Thus, there is a great incentive to find therapies and drugs preserving or restoring pancreatic β-cells mass and function. In this context, this review addresses the FoxO transcription factors as direct or indirect, in vivo or ex vivo drug targets, since FoxO proteins play a central role for β-cells growth and resistance to oxidative stress. The review includes specific proposals for preclinical drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1586/17446651.3.2.175DOI Listing

Publication Analysis

Top Keywords

foxo proteins
8
pancreatic β-cells
8
proteins pancreatic
4
β-cells potential
4
potential therapeutic
4
therapeutic targets
4
targets diabetes
4
diabetes diabetes
4
diabetes complete
4
complete type
4

Similar Publications

Network Pharmacology Unveils Multi-Systemic Intervention of Panax notoginseng in Osteoporosis via Key Genes and Signaling Pathways.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Orthopaedics, Xiaolan People's Hospital of Zhongshan, Zhongshan, Guangdong Province, People's Republic of China.

Background: Panax notoginseng (Burk.) F. H.

View Article and Find Full Text PDF

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

Background/objectives: Polyphenols represent a new strategy of dietary intervention for heat stress regulation.

Methods: The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels.

Results: Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways.

View Article and Find Full Text PDF

ECM stiffness regulates lung fibroblast survival through RasGRF1 dependent signaling.

J Biol Chem

January 2025

Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA. Electronic address:

Extracellular matrix stiffness is one of the multiple mechanical signals that alters cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the GEF, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways.

View Article and Find Full Text PDF

Common variable immunodeficiency (CVID) is the most common symptomatic and heterogeneous type of inborn errors of immunity (IEI). However, the pathogenesis process of this disease is often unknown. Epigenetic modifications may be involved in unresolved patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!