Wine fermentations typically involve the yeast Saccharomyces cerevisiae. However, many other yeast species participate to the fermentation process, some with interesting oenological traits. In this study the species Torulaspora delbrueckii, used occasionally in mixed or sequential fermentation with S. cerevisiae to improve wine sensory profile, was investigated to understand the physiological differences between the two. Next generation sequencing was used to characterize the transcriptome of T. delbrueckii and highlight the different genomic response of these yeasts during growth under wine-like conditions. Of particular interest were the basic differences in the glucose fermentation pathway and the formation of aromatic and flavour compounds such as glycerol, esters and acetic acid. Paralog genes were missing in glycolysis and glycerol biosynthesis in T. delbrueckii. Results indicate the tendency of T. delbrueckii to produce less acetic acid relied on a higher expression of alcoholic fermentation related genes, whereas acetate esters were influenced by the absence of esterases, ATF1-2. Additionally, in the Δbap2 S. cerevisiae strain, the final concentration of short branched chain ethyl esters (SBCEEs) was related to branched chain amino acid (BCAA) uptake. In conclusion, different adaption strategies are apparent for T. delbrueckii and S. cerevisiae yeasts, an understanding of which will allow winemakers to make better use of such microbial tools to achieve a desired wine sensory outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2019.01.014 | DOI Listing |
Curr Res Food Sci
December 2024
Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
Int J Mol Sci
November 2024
Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
yeasts play a relevant role in the fermentation industry, showing controversial behavior. There is growing interest in these yeasts in the fermentation industry as beer and bioethanol production, while in winemaking, they are considered spoilage microorganisms mainly used to produce ethyl phenols. These compounds may alter wine's organoleptic characteristics, leading to significant economic loss.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Plant Genetic Resources Center, Agronomic Institute (IAC), Campinas, São Paulo, Brazil.
Background: Genetic breeding is essential to develop grapevine genotypes adapted to warm climates and resistant to pathogens. Traditionally cultivated Vitis vinifera is susceptible to biotic and abiotic stresses. Winemakers and consumers, however, perceive wines from non-vinifera or hybrid cultivars as inferior.
View Article and Find Full Text PDFFront Plant Sci
July 2024
Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino [ICVV, CSIC-Gobierno de La Rioja-Universidad de La Rioja (CSIC-CAR-UR)], Logroño, Spain.
Serbia preserves a high number of local grape varieties, which have been cultivated across the country for centuries. Now, these ancient varieties are in the spotlight, and there is a global trend towards their recovery and characterization because they can revitalize regional, national and international grape and wine sectors. In addition, their genetic study can be useful to find new pedigree relationships to reveal how local varietal assortment evolved over time.
View Article and Find Full Text PDFMicroorganisms
April 2024
Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Ag. Spyridonos St., 12243 Egaleo, Greece.
Assyrtiko is a rare ancient grape variety of Greece, which is known to produce Protected Designation of Origin (PDO) Santorini white wines. Besides the famous character of the volcanic terroir, Assyrtiko of Santorini is also marked by a low pH value and sharp acidity. The aim of the present study was to apply a new inoculation procedure that modulates the fermentation process by maintaining the unique sensorial characteristics of Assyrtiko wines based on acidity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!